
SHERLOCK SECURITY REVIEW FOR

Prepared for: Axis FinancePrepared by: SherlockLead Security Expert: hashDates Audited: March 18 - March 30, 2024Prepared on: April 24, 2024
1

https://github.com/10xhash

Introduction
Axis is a modular auction protocol. It supports abstract atomic or batch auctionformats, which can be added to the central auction house as modules. Additionally,it allows creating and auctioning derivatives of the base asset in addition to spottokens. Axis Origin is a product built on Axis that enables smart token launcheswith a combination of sealed bid batch auctions and fixed price sales with cappedallowlists.
ScopeRepository: Axis-Fi/moonrakerBranch: masterCommit: 3cc44b63da95a41616617300bca24a159ad6a52b
For the detailed scope, see the contest details.
FindingsEach issue has an assigned severity:• Medium issues are security vulnerabilities that may not be directly exploitableor may require certain conditions in order to be exploited. All major issuesshould be addressed.• High issues are directly exploitable security vulnerabilities that need to befixed.
Issues found

Medium High8 10
Issues not fixed or acknowledged

Medium High0 0

1

https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/README.md#audit-scope

Issue H-1: Malicious user can overtake a prefunded auc-tion and steal the deposited funds
Source: https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/12
Found by0xLogos, 0xboriskataa, 404666, 404Notfound, AgileJune, Bauer, Honour,JohnSmith, KiroBrejka, Kose, audithare, bhilare_, cu5t0mPe0, devblixt, dimulski,dinkras, ether_sky, flacko, hash, hulkvision, jecikpo, joicygiore, lemonmon,luxurioussauce, merlin, nine9, novaman33, petro1912, poslednaya, radin200,seeques, shaka, sl1, underdog
SummaryIn the auction house whenever a new auction (lot) is created, its details arerecorded at the 0th index in the lotRouting mapping. This allows for an attacker tocreate an auction right after an honest user and take over their auction, allowingthem to steal funds in the case of a prefunded auction.
Vulnerability DetailWhen a new auction is created via AuctionHouse#auction(), it's routing details arerecorded directly in storage at lotRouting[lotId] where lotId is the return value ofthe auction() function itself. Since the return value is declared as a variable at thefunction signature level, it is initialized with the value of 0.This means that when the routing storage variable is declared (Routing storage
routing = lotRouting[lotId];) it will always point to lotRouting[0] as the value of
lotId is set a bit later in the auction() function to the correct index. This itselfleads to the issue that an honest user can create a prefunded auction and anattacker can then come in, create a new auction themselves that is not prefundedand be immediately entitled to the honest user's prefunded funds by cancelling theauction they've just created as they're set as the seller of the lot at lotRouting[0].This attack is also possible because the funding attribute of a lot is only set if anauction is specified to be prefunded in its parameters at creation.
ImpactThe following POC demonstrates how an attacker can overtake an honest user'sauction and steal the funds they've pre-deposited. The attacker only needs toensure the base token of the malicious auction they are creating is the same as the

2

https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/12
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/bases/Auctioneer.sol#L160-L164
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/bases/Auctioneer.sol#L174

one of the auction of the honest user. Once that's done, the attacker only needs tocancel the auction and the funds will be transferred to them.To run the POC just create a file AuctionHouseTest.t.sol somewhere under the
./moonraker/test directory, add src=/src/ to remappings.txt and run it using forge
test --match-test test_overtake_auction_and_steal_prefunded_funds.
// SPDX-License-Identifier: UNLICENSED
pragma solidity 0.8.19;

// Libraries
import {Test} from "forge-std/Test.sol";
import {ERC20} from 'solmate/tokens/ERC20.sol';

import 'src/modules/Modules.sol';
import {Auction} from 'src/modules/Auction.sol';

import {AuctionHouse} from 'src/AuctionHouse.sol';
import {FixedPriceAuctionModule} from 'src/modules/auctions/FPAM.sol';

contract AuctionHouseTest is Test {
AuctionHouse public auctionHouse;
FixedPriceAuctionModule public fixedPriceAuctionModule;

address public OWNER = makeAddr('Owner');
address public PROTOCOL = makeAddr('Protocol');
address public PERMIT2 = makeAddr('Permit 2');

MockERC20 public baseToken = new MockERC20("Base", "BASE", 18);
MockERC20 public quoteToken = new MockERC20("Quote", "QUOTE", 18);

function setUp() public {
vm.warp(1710965574);
auctionHouse = new AuctionHouse(OWNER, PROTOCOL, PERMIT2);
fixedPriceAuctionModule = new FixedPriceAuctionModule(address(auctionHouse));

vm.prank(OWNER);
auctionHouse.installModule(fixedPriceAuctionModule);

}

function test_overtake_auction_and_steal_prefunded_funds() public {
// Step 1
uint256 PREFUNDED_AMOUNT = 1_000e18;
address USER = makeAddr('User');
vm.startPrank(USER);
baseToken.mint(PREFUNDED_AMOUNT);
baseToken.approve(address(auctionHouse), PREFUNDED_AMOUNT);

3

AuctionHouse.RoutingParams memory routingParams;
routingParams.auctionType =
keycodeFromVeecode(fixedPriceAuctionModule.VEECODE());,!

routingParams.baseToken = baseToken;
routingParams.quoteToken = quoteToken;
routingParams.prefunded = true;

Auction.AuctionParams memory auctionParams;
auctionParams.start = uint48(block.timestamp + 1 weeks);
auctionParams.duration = 5 days;
auctionParams.capacity = uint96(PREFUNDED_AMOUNT);
auctionParams.implParams =

abi.encode(FixedPriceAuctionModule.FixedPriceParams({price: 1e18,
maxPayoutPercent: 100_000}));,!

auctionHouse.auction(routingParams, auctionParams, "");

// Step 2
address ATTACKER = makeAddr('Attacker');
vm.startPrank(ATTACKER);

routingParams.prefunded = false;
auctionHouse.auction(routingParams, auctionParams, "");

// ATTACKER is now the seller of the lot at lotRouting[0]; the lot's funding
remains the same,!

auctionHouse.cancel(0, "");

assertEq(baseToken.balanceOf(ATTACKER), PREFUNDED_AMOUNT);
assertEq(baseToken.balanceOf(USER), 0);

}
}

contract MockERC20 is ERC20 {
constructor(

string memory _name,
string memory _symbol,
uint8 _decimals

) ERC20(_name, _symbol, _decimals) {}

function mint(uint256 amount) public {
_mint(msg.sender, amount);

}
}

4

Code Snippethttps://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/bases/Auctioneer.sol#L160-L164 https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/bases/Auctioneer.sol#L174https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/bases/Auctioneer.sol#L194 https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/bases/Auctioneer.sol#L211-L212
Tool usedManual Review Foundry Forge
Recommendation
diff --git a/moonraker/src/bases/Auctioneer.sol

b/moonraker/src/bases/Auctioneer.sol,!

index a77585b..48c39d5 100644
--- a/moonraker/src/bases/Auctioneer.sol
+++ b/moonraker/src/bases/Auctioneer.sol
@@ -171,6 +171,9 @@ abstract contract Auctioneer is WithModules, ReentrancyGuard

{,!

revert InvalidParams();
}

+ // Increment lot count and get ID
+ lotId = lotCounter++;
+

Routing storage routing = lotRouting[lotId];

bool requiresPrefunding;
@@ -190,9 +193,6 @@ abstract contract Auctioneer is WithModules, ReentrancyGuard

{,!

|| baseTokenDecimals > 18 || quoteTokenDecimals < 6 ||
quoteTokenDecimals > 18,!

) revert InvalidParams();

- // Increment lot count and get ID
- lotId = lotCounter++;
-

// Call module auction function to store implementation-specific
data,!

(lotCapacity) =
auctionModule.auction(lotId, params_, quoteTokenDecimals,

baseTokenDecimals);,!

5

https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/bases/Auctioneer.sol#L160-L164
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/bases/Auctioneer.sol#L160-L164
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/bases/Auctioneer.sol#L174
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/bases/Auctioneer.sol#L174
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/bases/Auctioneer.sol#L194
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/bases/Auctioneer.sol#L194
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/bases/Auctioneer.sol#L211-L212
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/bases/Auctioneer.sol#L211-L212

Discussionsherlock-admin4The protocol team fixed this issue in the following PRs/commits:https://github.com/Axis-Fi/moonraker/pull/13210xhashThe protocol team fixed this issue in the following PRs/commits:Axis-Fi/moonraker#132Fixed Latest lotId is read before usagesherlock-admin4The Lead Senior Watson signed off on the fix.

6

https://github.com/Axis-Fi/moonraker/pull/132
https://github.com/Axis-Fi/moonraker/pull/132

Issue H-2: [M-1]
Source: https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/21
Found byAymen0909, KiroBrejka, ether_sky, novaman33, sl1
SummarySeller's funds may remain locked in the protocol, because of revert on 0 transfertokens. In the README.md file is stated that the protocol uses every token withERC20 Metadata and decimals between 6-18, which includes some revert on 0transfer tokens, so this should be considered as valid issue!
Vulnerability Detailin the AuctionHouse::claimProceeds() function there is the following block of code:
uint96 prefundingRefund = routing.funding + payoutSent_ - sold_;
unchecked {

routing.funding -= prefundingRefund;
}
Transfer.transfer(

routing.baseToken,
_getAddressGivenCallbackBaseTokenFlag(routing.callbacks, routing.seller),
prefundingRefund,
false

);

Since the batch auctions must be prefunded so routing.funding shouldn’t be zerounless all the tokens were sent in settle, in which case payoutSent will equal sold_.From this we make the conclusion that it is possible for prefundingRefund to beequal to 0. This means if the routing.baseToken is a revert on 0 transfer token theseller will never be able to get the quoteToken he should get from the auction.
ImpactThe seller's funds remain locked in the system and he will never be able to getthem back.

7

https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/21

Code SnippetThe problematic block of code in the AuctionHouse::claimProceeds() function:https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/AuctionHouse.sol#L604-L613
Transfer::transfer() function, since it transfers the baseToken:https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/lib/Transfer.sol#L49-L68
Tool usedManual Review
RecommendationCheck if the prefundingRefund > 0 like this:

function claimProceeds(
uint96 lotId_,
bytes calldata callbackData_

) external override nonReentrant {
// Validation
isLotValid(lotId);

// Call auction module to validate and update data
(uint96 purchased_, uint96 sold_, uint96 payoutSent_) =

getModuleForId(lotId).claimProceeds(lotId_);

// Load data for the lot
Routing storage routing = lotRouting[lotId_];

// Calculate the referrer and protocol fees for the amount in
// Fees are not allocated until the user claims their payout so that we

don't have to iterate through them here,!

// If a referrer is not set, that portion of the fee defaults to the
protocol,!

uint96 totalInLessFees;
{

(, uint96 toProtocol) = calculateQuoteFees(
lotFees[lotId_].protocolFee, lotFees[lotId_].referrerFee, false,

purchased_,!

);
unchecked {

totalInLessFees = purchased_ - toProtocol;
}

}

8

https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/AuctionHouse.sol#L604-L613
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/AuctionHouse.sol#L604-L613
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/lib/Transfer.sol#L49-L68
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/lib/Transfer.sol#L49-L68

// Send payment in bulk to the address dictated by the callbacks address
// If the callbacks contract is configured to receive quote tokens, send

the quote tokens to the callbacks contract and call the onClaimProceeds
callback

,!

,!

// If not, send the quote tokens to the seller and call the
onClaimProceeds callback,!

_sendPayment(routing.seller, totalInLessFees, routing.quoteToken,
routing.callbacks);,!

// Refund any unused capacity and curator fees to the address dictated
by the callbacks address,!

// By this stage, a partial payout (if applicable) and curator fees have
been paid, leaving only the payout amount (`totalOut`) remaining.,!

uint96 prefundingRefund = routing.funding + payoutSent_ - sold_;
++ if(prefundingRefund > 0) {

unchecked {
routing.funding -= prefundingRefund;

}
Transfer.transfer(
routing.baseToken,
_getAddressGivenCallbackBaseTokenFlag(routing.callbacks,

routing.seller),,!

prefundingRefund,
false

);
++ }

// Call the onClaimProceeds callback
Callbacks.onClaimProceeds(

routing.callbacks, lotId_, totalInLessFees, prefundingRefund,
callbackData_,!

);
}

Discussionnevillehuang#21, #31 and #112 highlights the same issue of prefundingRefund = 0#78 and #97 highlights the same less likely issue of totalInLessFees = 0All points to same underlying root cause of such tokens not allowing transfer ofzero, so duplicating them. Although this involves a specific type of ERC20, theimpact could be significant given seller's fund would be locked permanently
9

sherlock-admin4The protocol team fixed this issue in the following PRs/commits:https://github.com/Axis-Fi/moonraker/pull/14210xhashThe protocol team fixed this issue in the following PRs/commits:Axis-Fi/moonraker#142Fixed Now Transfer library only transfers token if amount > 0sherlock-admin4The Lead Senior Watson signed off on the fix.

10

https://github.com/Axis-Fi/moonraker/pull/142
https://github.com/Axis-Fi/moonraker/pull/142

Issue H-3: Module's gas yield can never be claimed andall yield will be lost
Source:https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/26
Found byAymen0909, ether_sky, hash, irresponsible, merlin, no, sl1
SummaryModule's gas yield can never be claimed
Vulnerability DetailThe protocol is meant to be deployed on blast, meaning that the gas and etherbalance accrue yield.By default these yield settings for both ETH and GAS yields are set to VOID asdefault, meaning that unless we configure the yield mode to claimable, we will beunable to recieve the yield. The protocol never sets gas to claimable for themodules, and the governor of the contract is the auction house, the auction housealso does not implement any function to set the modules gas yield to claimable.
constructor(address auctionHouse_) LinearVesting(auctionHouse_)

BlastGas(auctionHouse_) {},!

The constructor of both BlastLinearVesting and BlastEMPAM set the auction househere BlastGas(auctionHouse_) if we look at this contract we can observe the above.BlastGas.sol
constructor(address parent_) {

// Configure governor to claim gas fees
IBlast(0x4300000000000000000000000000000000000002).configureGovernor(parent_ c

);,!

}

As we can see above, the governor is set in constructor, but we never set gas toclaimable. Gas yield mode will be in its default mode which is VOID, the moduleswill not accue gas yields. Since these modules never set gas yield mode toclaimable, the auction house cannot claim any gas yield for either of the contracts.Additionally the auction house includes no function to configure yield mode, the
11

https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/26

auction house contract only has a function to claim the gas yield but this will revertsince the yield mode for these module contracts will be VOID.
ImpactGas yields will never acrue and the yield will forever be lost
Code Snippethttps://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/blast/modules/BlastGas.sol#L11
Tool usedManual Review
Recommendationchange the following in BlastGas contract, this will set the gas yield of the modulesto claimable in the constructor and allowing the auction house to claim gas yield.
interface IBlast {

function configureGovernor(address governor_) external;
function configureClaimableGas() external;

}

abstract contract BlastGas {
// ========== CONSTRUCTOR ========== //

constructor(address parent_) {
// Configure governor to claim gas fees

IBlast(0x4300000000000000000000000000000000000002).configureClaimableGas();,!

IBlast(0x4300000000000000000000000000000000000002).configureGovernor(pare c

nt_);,!

}
}

DiscussionnevillehuangValid, due to this comment within the contract indicating interest in claiming gasyield but it can never be claimed
12

https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/blast/modules/BlastGas.sol#L11
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/blast/modules/BlastGas.sol#L11
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/blast/modules/BlastGas.sol#L12

sherlock-admin4The protocol team fixed this issue in the following PRs/commits:https://github.com/Axis-Fi/moonraker/pull/14410xhashThe protocol team fixed this issue in the following PRs/commits:Axis-Fi/moonraker#144Fixed Now configureClaimableGa() is invoked inside constructorsherlock-admin4The Lead Senior Watson signed off on the fix.

13

https://github.com/Axis-Fi/moonraker/pull/144
https://github.com/Axis-Fi/moonraker/pull/144

Issue H-4: Auction creators have the ability to lock bid-ders' funds.
Source:https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/66
Found byKiroBrejka, ether_sky, hash, jecikpo, lemonmon, novaman33, qbs, sl1, underdog
Summary
Auction creators have the ability to cancel an auction before it starts. However,once the auction begins, they should not be allowed to cancel it. During the
auction, bidders can place bids and send quote tokens to the auction house. Afterthe auction concludes, bidders can either receive base tokens or retrieve their
quote tokens. Unfortunately, batch auction creators can cancel an auction when itends. This means that auction creators can cancel their auctions if they anticipate
losses. This should not be allowed. The significant risk is that bidders' funds couldbecome locked in the auction house.
Vulnerability Detail
Auction creators can not cancel an auction once it concludes.
function cancelAuction(uint96 lotId_) external override onlyInternal {

revertIfLotConcluded(lotId);
}

They also can not cancel it while it is active.
function _cancelAuction(uint96 lotId_) internal override {

revertIfLotActive(lotId);

auctionData[lotId_].status = Auction.Status.Claimed;
}

When the block.timestamp aligns with the conclusion time of the auction, we canbypass these checks.
function _revertIfLotConcluded(uint96 lotId_) internal view virtual {

if (lotData[lotId_].conclusion < uint48(block.timestamp)) {
revert Auction_MarketNotActive(lotId_);

}

14

https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/66

if (lotData[lotId_].capacity == 0) revert Auction_MarketNotActive(lotId_);
}
function _revertIfLotActive(uint96 lotId_) internal view override {

if (
auctionData[lotId_].status == Auction.Status.Created

&& lotData[lotId_].start <= block.timestamp
&& lotData[lotId_].conclusion > block.timestamp

) revert Auction_WrongState(lotId_);
}

So Auction creators can cancel an auction when it concludes. Then the capacitybecomes 0 and the auction status transitions to Claimed.
Bidders can not refund their bids.
function refundBid(

uint96 lotId_,
uint64 bidId_,
address caller_

) external override onlyInternal returns (uint96 refund) {
revertIfLotConcluded(lotId);

}
function _revertIfLotConcluded(uint96 lotId_) internal view virtual {

if (lotData[lotId_].capacity == 0) revert Auction_MarketNotActive(lotId_);
}

The only way for bidders to reclaim their tokens is by calling the claimBids function.However, bidders can only claim bids when the auction status is Settled.
function claimBids(

uint96 lotId_,
uint64[] calldata bidIds_

) {
revertIfLotNotSettled(lotId);

}

To settle the auction, the auction status should be Decrypted. This requiressubmitting the private key. The auction creator can not submit the private keyor submit it without decrypting any bids by calling submitPrivateKey(lotId,
privateKey, 0). Then nobody can decrypt the bids using the decryptAndSortBidsfunction which always reverts.
function decryptAndSortBids(uint96 lotId_, uint64 num_) external {

if (
auctionData[lotId_].status != Auction.Status.Created // @audit, here

15

|| auctionData[lotId_].privateKey == 0
) {

revert Auction_WrongState(lotId_);
}

decryptAndSortBids(lotId, num_);
}

As a result, the auction status remains unchanged, preventing it from transitioningto Settled. This leaves the bidders' quote tokens locked in the auction house.Please add below test to the test/modules/Auction/cancel.t.sol.
function test_cancel() external whenLotIsCreated {

Auction.Lot memory lot = _mockAuctionModule.getLot(_lotId);

console2.log("lot.conclusion before ==> ", lot.conclusion);
console2.log("block.timestamp before ==> ", block.timestamp);
console2.log("isLive ==> ",
_mockAuctionModule.isLive(_lotId));,!

vm.warp(lot.conclusion - block.timestamp + 1);
console2.log("lot.conclusion after ==> ", lot.conclusion);
console2.log("block.timestamp after ==> ", block.timestamp);
console2.log("isLive ==> ",
_mockAuctionModule.isLive(_lotId));,!

vm.prank(address(_auctionHouse));
_mockAuctionModule.cancelAuction(_lotId);

}

The log is
lot.conclusion before ==> 86401
block.timestamp before ==> 1
isLive ==> true
lot.conclusion after ==> 86401
block.timestamp after ==> 86401
isLive ==> false

ImpactUsers' funds can be locked.

16

Code Snippethttps://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/Auction.sol#L354https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/auctions/EMPAM.sol#L204https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/Auction.sol#L512https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/Auction.sol#L556https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/auctions/EMPAM.sol#L449
Tool usedManual Review
Recommendation
function _revertIfLotConcluded(uint96 lotId_) internal view virtual {
- if (lotData[lotId_].conclusion < uint48(block.timestamp)) {
+ if (lotData[lotId_].conclusion <= uint48(block.timestamp)) {

revert Auction_MarketNotActive(lotId_);
}

// Capacity is sold-out, or cancelled
if (lotData[lotId_].capacity == 0) revert Auction_MarketNotActive(lotId_);

}

Discussionsherlock-admin4The protocol team fixed this issue in the following PRs/commits:https://github.com/Axis-Fi/moonraker/pull/10510xhashThe protocol team fixed this issue in the following PRs/commits:Axis-Fi/moonraker#105Fixed start and conclusion timestamps of auction is now made consistent across allfunctionssherlock-admin4The Lead Senior Watson signed off on the fix.
17

https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/Auction.sol#L354
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/Auction.sol#L354
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/auctions/EMPAM.sol#L204
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/auctions/EMPAM.sol#L204
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/Auction.sol#L512
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/Auction.sol#L512
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/Auction.sol#L556
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/Auction.sol#L556
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/auctions/EMPAM.sol#L449
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/auctions/EMPAM.sol#L449
https://github.com/Axis-Fi/moonraker/pull/105
https://github.com/Axis-Fi/moonraker/pull/105

Issue H-5: Bidders can not claim their bids if the auctioncreator claims the proceeds.
Source:https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/67
Found bycu5t0mPe0, ether_sky, hash, jecikpo, joicygiore, novaman33
SummaryBefore the batch auction begins, the auction creator should prefund base tokensto the auction house. During the auction, bidders transfer quote tokens to the
auction house. After the auction settles,• Bidders can claim their bids and either to receive base tokens or retrieve their

quote tokens.• The auction creator can receive the quote tokens and retrieve the remaining
base tokens.• There is no specific order for these two operations.However, if the auction creator claims the proceeds, bidders can not claim their

bids anymore. Consequently, their funds will remain locked in the auction house.
Vulnerability DetailWhen the auction creator claims Proceeds, the auction status changes to Claimed.
function _claimProceeds(uint96 lotId_)

internal
override
returns (uint96 purchased, uint96 sold, uint96 payoutSent)

{
auctionData[lotId_].status = Auction.Status.Claimed;

}

Once the auction status has transitioned to Claimed, there is indeed no way tochange it back to Settled.However, bidders can only claim their bids when the auction status is Settled.
function claimBids(

uint96 lotId_,

18

https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/67

uint64[] calldata bidIds_
)

external
override
onlyInternal
returns (BidClaim[] memory bidClaims, bytes memory auctionOutput)

{
revertIfLotInvalid(lotId);
revertIfLotNotSettled(lotId); // @audit, here

return _claimBids(lotId_, bidIds_);
}

Please add below test to the test/modules/auctions/claimBids.t.sol.
function test_claimProceeds_before_claimBids()

external
givenLotIsCreated
givenLotHasStarted
givenBidIsCreated(_BID_AMOUNT_UNSUCCESSFUL, _BID_AMOUNT_OUT_UNSUCCESSFUL)
givenBidIsCreated(_BID_PRICE_TWO_AMOUNT, _BID_PRICE_TWO_AMOUNT_OUT)
givenBidIsCreated(_BID_PRICE_TWO_AMOUNT, _BID_PRICE_TWO_AMOUNT_OUT)
givenBidIsCreated(_BID_PRICE_TWO_AMOUNT, _BID_PRICE_TWO_AMOUNT_OUT)
givenBidIsCreated(_BID_PRICE_TWO_AMOUNT, _BID_PRICE_TWO_AMOUNT_OUT)
givenBidIsCreated(_BID_PRICE_TWO_AMOUNT, _BID_PRICE_TWO_AMOUNT_OUT)
givenBidIsCreated(_BID_PRICE_TWO_AMOUNT, _BID_PRICE_TWO_AMOUNT_OUT)
givenLotHasConcluded
givenPrivateKeyIsSubmitted
givenLotIsDecrypted
givenLotIsSettled

{
uint64 bidId = 1;

uint64[] memory bidIds = new uint64[](1);
bidIds[0] = bidId;

// Call the function
vm.prank(address(_auctionHouse));
_module.claimProceeds(_lotId);

bytes memory err = abi.encodeWithSelector(EncryptedMarginalPriceAuctionModul c

e.Auction_WrongState.selector, _lotId);,!

vm.expectRevert(err);
vm.prank(address(_auctionHouse));
_module.claimBids(_lotId, bidIds);

19

}

ImpactUsers' funds could be locked.
Code Snippethttps://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/auctions/EMPAM.sol#L846https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/Auction.sol#L556
Tool usedManual Review
RecommendationAllow bidders to claim their bids even when the auction status is Claimed.
DiscussionOightyDuplicate of #18sherlock-admin4The protocol team fixed this issue in the following PRs/commits:https://github.com/Axis-Fi/moonraker/pull/13910xhashThe protocol team fixed this issue in the following PRs/commits:Axis-Fi/moonraker#139Fixed The claimed status is replaced with a boolean. Hence the status of a settledauction will now always remain settledsherlock-admin4The Lead Senior Watson signed off on the fix.

20

https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/auctions/EMPAM.sol#L846
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/auctions/EMPAM.sol#L846
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/Auction.sol#L556
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/Auction.sol#L556
https://github.com/Axis-Fi/moonraker/pull/139
https://github.com/Axis-Fi/moonraker/pull/139

Issue H-6: Bidders' funds may become locked due to in-consistent price order checks in MaxPriorityQueue andthe _claimBid function.
Source:https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/83
Found byether_sky
SummaryIn the MaxPriorityQueue, bids are ordered by decreasing price. We calculate the
marginal price, marginal bid ID, and determine the auction winners. When a
bidder wants to claim, we verify that the bid price of this bidder exceeds the
marginal price. However, there's minor inconsistency: certain bids may have
marginal price and a smaller bid ID than marginal bid ID and they are not actually
winners. As a result, the auction winners and these bidders can receive basetokens. However, there is a finite supply of base tokens for auction winners. Early
bidders who claim can receive base tokens, but the last bidders can not.
Vulnerability DetailThe comparison for the order of bids in the MaxPriorityQueue is as follow: if q1 * b2
< q2 * b1 then bid (q2, b2) takes precedence over bid (q1, b1).
function _isLess(Queue storage self, uint256 i, uint256 j) private view returns

(bool) {,!

uint64 iId = self.bidIdList[i];
uint64 jId = self.bidIdList[j];
Bid memory bidI = self.idToBidMap[iId];
Bid memory bidJ = self.idToBidMap[jId];
uint256 relI = uint256(bidI.amountIn) * uint256(bidJ.minAmountOut);
uint256 relJ = uint256(bidJ.amountIn) * uint256(bidI.minAmountOut);
if (relI == relJ) {

return iId > jId;
}
return relI < relJ;

}

And in the _calimBid function, the price is checked directly as follow: if q * 10 **
baseDecimal / b >= marginal price, then this bid can be claimed.

21

https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/83

function _claimBid(
uint96 lotId_,
uint64 bidId_

) internal returns (BidClaim memory bidClaim, bytes memory auctionOutput_) {
uint96 price = uint96(

bidData.minAmountOut == 0
? 0 // TODO technically minAmountOut == 0 should be an infinite

price, but need to check that later. Need to be careful we don't introduce a
way to claim a bid when we set marginalPrice to type(uint96).max when it
cannot be settled.

,!

,!

,!

: Math.mulDivUp(uint256(bidData.amount), baseScale,
uint256(bidData.minAmountOut)),!

);
uint96 marginalPrice = auctionData[lotId_].marginalPrice;
if (

price > marginalPrice
|| (price == marginalPrice && bidId_ <=

auctionData[lotId_].marginalBidId),!

) { }
}

The issue is that a bid with the marginal price might being placed after marginal
bid in the MaxPriorityQueue due to rounding.
q1 * b2 < q2 * b1, but mulDivUp(q1, 10 ** baseDecimal, b1) = mulDivUp(q2, 10 **

baseDecimal, b2),!

Let me take an example. The capacity is 10e18 and there are 6 bids ((4e18 + 1,
2e18) for first bidder, (4e18 + 2, 2e18) for the other bidders. The order in the
MaxPriorityQueue is (2, 3, 4, 5, 6, 1). The marginal bid ID is 6. The marginal
price is 2e18 + 1. The auction winners are (2, 3, 4, 5, 6). However, bidder 1can also claim because it's price matches the marginal price and it has thesmallest bid ID. There are only 10e18 base tokens, but all 6 bidders require 2e18
base tokens. As a result, at least one bidder won't be able to claim base tokens, andhis quote tokens will remain locked in the auction house.The Log is
marginal price ==> 2000000000000000001
marginal bid id ==> 6

paid to bid 1 ==> 4000000000000000001
payout to bid 1 ==> 1999999999999999999

paid to bid 2 ==> 4000000000000000002

22

payout to bid 2 ==> 2000000000000000000

paid to bid 3 ==> 4000000000000000002
payout to bid 3 ==> 2000000000000000000

paid to bid 4 ==> 4000000000000000002
payout to bid 4 ==> 2000000000000000000

paid to bid 5 ==> 4000000000000000002
payout to bid 5 ==> 2000000000000000000

paid to bid 6 ==> 4000000000000000002
payout to bid 6 ==> 2000000000000000000

Please add below test to the test/modules/auctions/EMPA/claimBids.t.sol

function test_claim_nonClaimable_bid()
external
givenLotIsCreated
givenLotHasStarted
givenBidIsCreated(4e18 + 1, 2e18) // bidId = 1
givenBidIsCreated(4e18 + 2, 2e18) // bidId = 2
givenBidIsCreated(4e18 + 2, 2e18) // bidId = 3
givenBidIsCreated(4e18 + 2, 2e18) // bidId = 4
givenBidIsCreated(4e18 + 2, 2e18) // bidId = 5
givenBidIsCreated(4e18 + 2, 2e18) // bidId = 6
givenLotHasConcluded
givenPrivateKeyIsSubmitted
givenLotIsDecrypted
givenLotIsSettled

{
EncryptedMarginalPriceAuctionModule.AuctionData memory auctionData =
_getAuctionData(_lotId);,!

console2.log('marginal price ==> ', auctionData.marginalPrice);
console2.log('marginal bid id ==> ', auctionData.marginalBidId);
console2.log('');

for (uint64 i; i < 6; i ++) {
uint64[] memory bidIds = new uint64[](1);
bidIds[0] = i + 1;
vm.prank(address(_auctionHouse));
(Auction.BidClaim[] memory bidClaims,) = _module.claimBids(_lotId,

bidIds);,!

Auction.BidClaim memory bidClaim = bidClaims[0];
if (i > 0) {

23

console2.log('*****');
}
console2.log('paid to bid ', i + 1, ' ==> ', bidClaim.paid);
console2.log('payout to bid ', i + 1, ' ==> ', bidClaim.payout);

}
}

ImpactCode Snippethttps://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/lib/MaxPriorityQueue.sol#L109-L120 https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/auctions/EMPAM.sol#L347-L350
Tool usedManual Review
RecommendationIn the MaxPriorityQueue, we should check the price: Math.mulDivUp(q, 10 **
baseDecimal, b).
DiscussionOightyBelieve this is valid due to bids below marginal price being able to claim, whichwould result in a winning bidder not receiving theirs. Need to think about theremediation a bit more. There are some other precision issues with the rounding up.sherlock-admin4The protocol team fixed this issue in the following PRs/commits:https://github.com/Axis-Fi/moonraker/pull/14610xhashThe protocol team fixed this issue in the following PRs/commits:Axis-Fi/moonraker#146Fixed Now same computation is used for queue and marginal price calculationssherlock-admin4The Lead Senior Watson signed off on the fix.

24

https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/lib/MaxPriorityQueue.sol#L109-L120
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/lib/MaxPriorityQueue.sol#L109-L120
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/auctions/EMPAM.sol#L347-L350
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/auctions/EMPAM.sol#L347-L350
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/auctions/EMPAM.sol#L347-L350
https://github.com/Axis-Fi/moonraker/pull/146
https://github.com/Axis-Fi/moonraker/pull/146

Issue H-7: Overflow in curate() function, results in per-manently stuck funds
Source:https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/88
Found bydimulski, merlin
SummaryThe Axis-Finance protocol has a curate() function that can be used to set a certainfee to a curator set by the seller for a certain auction. Typically, a curator isproviding some service to an auction seller to help the sale succeed. This could bedoing diligence on the project and vouching for them, or something simpler, such aslisting the auction on a popular interface. A lot of memecoins have a big supply inthe trillions, for example SHIBA INU has a total supply of nearly 1000 trillion tokensand each token has 18 decimals. With a lot of new memecoins emerging every daydue to the favorable bullish conditions and having supply in the trillions, it is safe toassume that such protocols will interact with the Axis-Finance protocol. Creatingauctions for big amounts, and promising big fees to some celebrities or influencersto promote their project. The funding parameter in the Routing struct is of type
uint96

struct Routing {
...
uint96 funding;
...

}

The max amount of tokens with 18 decimals a uint96 variable can hold is around 80billion. The problem arises in the curate() function, If the auction is prefunded,which all batch auctions are(a normal FPAM auction can also be prefunded), andthe amount of prefunded tokens is big enough, close to 80 billion tokens with 18decimals, and the curator fee is for example 7.5%, when the curatorFeePayout isadded to the current funding, the funding will overflow.
unchecked {

routing.funding += curatorFeePayout;
}

25

https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/88
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/AuctionHouse.sol#L634-L699
https://etherscan.io/token/0x95ad61b0a150d79219dcf64e1e6cc01f0b64c4ce#readContract
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/AuctionHouse.sol#L634-L699

Vulnerability DetailGist After following the steps in the above mentioned gist, add the following test tothe AuditorTests.t.sol

function test_CuratorFeeOverflow() public {
vm.startPrank(alice);
Veecode veecode = fixedPriceAuctionModule.VEECODE();
Keycode keycode = keycodeFromVeecode(veecode);
bytes memory _derivativeParams = "";
uint96 lotCapacity = 75_000_000_000e18; // this is 75 billion tokens
mockBaseToken.mint(alice, 100_000_000_000e18);
mockBaseToken.approve(address(auctionHouse), type(uint256).max);

FixedPriceAuctionModule.FixedPriceParams memory myStruct =
FixedPriceAuctionModule.FixedPriceParams({,!

price: uint96(1e18),
maxPayoutPercent: uint24(1e5)

});

Auctioneer.RoutingParams memory routingA = Auctioneer.RoutingParams({
auctionType: keycode,
baseToken: mockBaseToken,
quoteToken: mockQuoteToken,
curator: curator,
callbacks: ICallback(address(0)),
callbackData: abi.encode(""),
derivativeType: toKeycode(""),
derivativeParams: _derivativeParams,
wrapDerivative: false,
prefunded: true

});

Auction.AuctionParams memory paramsA = Auction.AuctionParams({
start: 0,
duration: 1 days,
capacityInQuote: false,
capacity: lotCapacity,
implParams: abi.encode(myStruct)

});

string memory infoHashA;
auctionHouse.auction(routingA, paramsA, infoHashA);
vm.stopPrank();

vm.startPrank(owner);
FeeManager.FeeType type_ = FeeManager.FeeType.MaxCurator;

26

https://gist.github.com/AtanasDimulski/a47112fc7ae473fd69b42ba997819726
https://gist.github.com/AtanasDimulski/a47112fc7ae473fd69b42ba997819726

uint48 fee = 7_500; // 7.5% max curator fee
auctionHouse.setFee(keycode, type_, fee);
vm.stopPrank();

vm.startPrank(curator);
uint96 fundingBeforeCuratorFee;
uint96 fundingAfterCuratorFee;
(,fundingBeforeCuratorFee,,,,,,,) = auctionHouse.lotRouting(0);
console2.log("Here is the funding normalized before curator fee is set:

", fundingBeforeCuratorFee/1e18);,!

auctionHouse.setCuratorFee(keycode, fee);
bytes memory callbackData_ = "";
auctionHouse.curate(0, callbackData_);
(,fundingAfterCuratorFee,,,,,,,) = auctionHouse.lotRouting(0);
console2.log("Here is the funding normalized after curator fee is set:

", fundingAfterCuratorFee/1e18);,!

console2.log("Balance of base token of the auction house: ",
mockBaseToken.balanceOf(address(auctionHouse))/1e18);,!

vm.stopPrank();
}

Logs:
Here is the funding normalized before curator fee is set: 75000000000
Here is the funding normalized after curator fee is set: 1396837485
Balance of base token of the auction house: 80625000000

To run the test use: forge test -vvv --mt test_CuratorFeeOverflow

ImpactIf there is an overflow occurs in the curate() function, a big portion of the tokenswill be stuck in the Axis-Finance protocol forever, as there is no way for them to bewithdrawn, either by an admin function, or by canceling the auction (if an auctionhas started, only FPAM auctions can be canceled), as the amount returned iscalculated in the following way
if (routing.funding > 0) {

uint96 funding = routing.funding;

// Set to 0 before transfer to avoid re-entrancy
routing.funding = 0;

// Transfer the base tokens to the appropriate contract
Transfer.transfer(

routing.baseToken,

27

https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/AuctionHouse.sol#L634-L699

_getAddressGivenCallbackBaseTokenFlag(routing.callbacks, routing.seller),
funding,
false

);
...

}

Code Snippethttps://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/AuctionHouse.sol#L665-L667
Tool usedManual review & Foundry
RecommendationEither remove the unchecked block
unchecked {

routing.funding += curatorFeePayout;
}

so that when overflow occurs, the transaction will revert, or better yet also changethe funding variable type from uint96 to uint256 this way sellers can create bigenough auctions, and provide sufficient curator fee in order to bootstrap theirprotocol successfully .
Discussionsherlock-admin4The protocol team fixed this issue in the following PRs/commits:https://github.com/Axis-Fi/moonraker/pull/14110xhashThe protocol team fixed this issue in the following PRs/commits:Axis-Fi/moonraker#141Fixed in https://github.com/Axis-Fi/moonraker/pull/130 by using uint256 henceavoiding unsafe casting. Confirmation tests added in PR 141sherlock-admin4The Lead Senior Watson signed off on the fix.

28

https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/AuctionHouse.sol#L665-L667
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/AuctionHouse.sol#L665-L667
https://github.com/Axis-Fi/moonraker/pull/141
https://github.com/Axis-Fi/moonraker/pull/141
https://github.com/Axis-Fi/moonraker/pull/130

PseudoArtistHacksI think all the issues regarding overflow/underflow should be duped with each otherThe root cause of all the issues are same i.e unsafe casting

29

Issue H-8: It is possible to DoS batch auctions by sub-mitting invalid AltBn128 points when bidding
Source:https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/147
Found byhash, underdog
SummaryBidders can submit invalid points for the AltBn128 elliptic curve. The invalid pointswill make the decrypting process always revert, effectively DoSing the auctionprocess, and locking funds forever in the protocol.
Vulnerability DetailAxis finance supports a sealed-auction type of auctions, which is achieved in theEncrypted Marginal Price Auction module by leveraging the ECIES encryptionscheme. Axis will specifically use a simplified ECIES implementation that uses theAltBn128 curve, which is a curve with generator point (1,2) and the followingformula:

y2 = x3 + 3

Bidders will submit encrypted bids to the protocol. One of the parameters requiredto be submitted by the bidders so that bids can later be decrypted is a public keythat will be used in the EMPA decryption process:
// EMPAM.sol

function _bid(
uint96 lotId_,
address bidder_,
address referrer_,
uint96 amount_,
bytes calldata auctionData_

) internal override returns (uint64 bidId) {
// Decode auction data
(uint256 encryptedAmountOut, Point memory bidPubKey) =

abi.decode(auctionData_, (uint256, Point));

...

30

https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/147

// Check that the bid public key is a valid point for the encryption
library,!

if (!ECIES.isValid(bidPubKey)) revert Auction_InvalidKey();

...

return bidId;
}

As shown in the code snippet, bidders will submit a bidPubKey, which consists in anx and y coordinate (this is actually the public key, which can be represented as apoint with x and y coordinates over an elliptic curve).The bidPubKey point will then be validated by the ECIES library’s isValid() function.Essentially, this function will perform three checks:1. Verify that the point provided is on the AltBn128 curve2. Ensure the x and y coordinates of the point provided don’t correspond to thegenerator point (1, 2)3. Ensure that the x and y coordinates of the point provided don’t corrspond tothe point at infinity (0,0)
// ECIES.sol

function isOnBn128(Point memory p) public pure returns (bool) {
// check if the provided point is on the bn128 curve y**2 = x**3 + 3,

which has generator point (1, 2),!

return _fieldmul(p.y, p.y) == _fieldadd(_fieldmul(p.x, _fieldmul(p.x,
p.x)), 3);,!

}

/// @notice Checks whether a point is valid. We consider a point valid if it
is on the curve and not the generator point or the point at infinity.,!

function isValid(Point memory p) public pure returns (bool) {
return isOnBn128(p) && !(p.x == 1 && p.y == 2) && !(p.x == 0 && p.y ==

0);,!

}

Although these checks are correct, one important check is missing in order toconsider that the point is actually a valid point in the AltBn128 curve.As a summary, ECC incorporates the concept of finite fields. Essentially, the ellipticcurve is considered as a square matrix of size pxp, where p is the finite field (in ourcase, the finite field
31

https://cryptobook.nakov.com/asymmetric-key-ciphers/elliptic-curve-cryptography-ecc#elliptic-curves-over-finite-fields

defined in Axis’ ECIES.sol library is stord in the FIELD_MODULUS constant with a value of
21888242871839275222246405745257275088696311157297823662689037894645226208583).The curve equation then takes this form:

y2 = x3 + ax+ b(modp)

Note that because the function is now limited to a field of pxp, any point providedthat has an x or y coordinate greater than the modulus will fall outside of the matrix,thus being invalid. In other words, if x > p or y > p, the point should be consideredinvalid. However, as shown in the previous snippet of code, this check is notperformed in Axis’ ECIES implementation.This enables a malicious bidder to provide an invalid point with an x or y coordinategreater than the field, but that still passes the checked conditions in the ECIESlibrary. The isValid() check will pass and the bid will be successfully submitted,although the public key is theoretically invalid.This leads us to the second part of the attack. When the auction concludes, thedecryption process will begin. The process consists in:1. Calling the decryptAndSortBids() function. This will trigger the internal
_decryptAndSortBids() function. It is important to note that this function willonly set the status of the auction to Decrypted if ALL the bids submitted havebeen decrypted. Otherwise, the auction can’t continue.2. _decryptAndSortBids() will call the internal _decrypt() function for each of thebids submittted3. _decrypt() will finally call the ECIES’ decrypt() function so that the bid can bedecrypted:
// EMPAM.sol

function _decrypt(
uint96 lotId_,
uint64 bidId_,
uint256 privateKey_

) internal view returns (uint256 amountOut) {
// Load the encrypted bid data
EncryptedBid memory encryptedBid = encryptedBids[lotId_][bidId_];

// Decrypt the message
// We expect a salt calculated as the keccak256 hash of lot id,

bidder, and amount to provide some (not total) uniqueness to the
encryption, even if the same shared secret is used

,!

,!

Bid storage bidData = bids[lotId_][bidId_];
uint256 message = ECIES.decrypt(

32

encryptedBid.encryptedAmountOut,
encryptedBid.bidPubKey,
privateKey_,
uint256(keccak256(abi.encodePacked(lotId_, bidData.bidder,

bidData.amount))) // @audit-issue [MEDIUM] - Missing bidId in salt
creates the edge case where a bid susceptible of being discovered if a
user places two bids with the same input amount. Because the same key
will be used when performing the XOR, the symmetric key can be
extracted, thus potentially revealing the bid amounts.

,!

,!

,!

,!

,!

);

...
}

As shown in the code snippet, one of the parameters passed to the
ECIES.decrypt() function will be the encryptedBid.bidPubKey (the invalid pointprovided by the malicious bidder). As we can see, the first step performed by
ECIES.decrypt() will be to call the recoverSharedSecret() function, passingthe invalid public key (ciphertextPubKey_) and the auction’s global
privateKey_ as parameter:
// ECIES.sol

function decrypt(
uint256 ciphertext_,
Point memory ciphertextPubKey_,
uint256 privateKey_,
uint256 salt_

) public view returns (uint256 message_) {
// Calculate the shared secret
// Validates the ciphertext public key is on the curve and the

private key is valid,!

uint256 sharedSecret = recoverSharedSecret(ciphertextPubKey_,
privateKey_);,!

...
}

function recoverSharedSecret(
Point memory ciphertextPubKey_,
uint256 privateKey_

) public view returns (uint256) {
...

Point memory p = _ecMul(ciphertextPubKey_, privateKey_);

33

return p.x;
}

function _ecMul(Point memory p, uint256 scalar) private view returns
(Point memory p2) {,!

(bool success, bytes memory output) =
address(0x07).staticcall{gas: 6000}(abi.encode(p.x, p.y,

scalar));,!

if (!success || output.length == 0) revert("ecMul failed.");

p2 = abi.decode(output, (Point));
}

Among other things, recoverSharedSecret() will execute a scalar multiplicationbetween the invalid public key and the global private key via the ecMul precompile.This is where the denial of servide will take place.The ecMul precompile contract was incorporated in EIP-196. Checking the EIP’sexact semantics section, we can see that inputs will be considered invalid if “. . .any of the field elements (point coordinates) is equal or larger than the fieldmodulus p, the contract fails”. Because the point submitted by the bidder had oneof the x or y coordinates bigger than the field modulus p (because Axis nevervalidated that such value was smaller than the field), the call to the ecmulprecompile will fail, reverting with the “ecMul failed.” error.Because the decryption process expects ALL the bids submitted for an auction tobe decrypted prior to actually setting the auctions state to Decrypted, if only onebid decryption fails, the decryption process won’t be completed, and the wholeauction process (decrypting, settling, . . .) won’t be executable because the auctionnever reaches the Decrypted state.
Proof of ConceptThe following proof of concept shows a reproduction of the attack mentionedabove. In order to reproduce it, following these steps:1. Inside EMPAModuleTest.sol, change the _createBidData() function so that ituses the(21888242871839275222246405745257275088696311157297823662689037894645226208584,2) point instead of the _bidPublicKey variable. This is a valid point as per Axis’checks, but it is actually invalid given that the x coordinate is greater than thefield modulus:

// EMPAModuleTest.t.sol

34

https://eips.ethereum.org/EIPS/eip-196
https://eips.ethereum.org/EIPS/eip-196#exact-semantics

function _createBidData(
address bidder_,
uint96 amountIn_,
uint96 amountOut_

) internal view returns (bytes memory) {
uint256 encryptedAmountOut = _encryptBid(_lotId, bidder_,

amountIn_, amountOut_);,!

- return abi.encode(encryptedAmountOut, _bidPublicKey);
+ return abi.encode(encryptedAmountOut, Point({x: 218882428718392752 c

22246405745257275088696311157297823662689037894645226208584, y: 2}));,!

}

2. Paste the following code in
moonraker/test/modules/auctions/EMPA/decryptAndSortBids.t.sol:
// decryptAndSortBids.t.sol

function testBugdosDecryption()
external
givenLotIsCreated
givenLotHasStarted
givenBidIsCreated(_BID_AMOUNT, _BID_AMOUNT_OUT)
givenBidIsCreated(_BID_AMOUNT, _BID_AMOUNT_OUT)
givenLotHasConcluded
givenPrivateKeyIsSubmitted

{

vm.expectRevert("ecMul failed.");
_module.decryptAndSortBids(_lotId, 1);

}

3. Run the test inside moonraker with the following command: forge test --mt
testBugdosDecryption

ImpactHigh. A malicious bidder can effectively DoS the decryption process, which willprevent all actions in the protocol from being executed. This attack will make all thebids and prefunded auction funds remain stuck forever in the contract, because allthe functions related to the post-concluded auction steps expect the bids to befirst decrypted.
35

Code Snippethttps://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/auctions/EMPAM.sol#L250https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/lib/ECIES.sol#L138https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/lib/ECIES.sol#L133
Tool usedManual Review, foundry
RecommendationEnsure that the x and y coordinates are smaller than the field modulus inside the
ECIES.sol isValid() function, adding the p.x < FIELD_MODULUS && p.y <
FIELD_MODULUS check so that invalid points can’t be submitted:
// ECIES.sol

function isValid(Point memory p) public pure returns (bool) {
- return isOnBn128(p) && !(p.x == 1 && p.y == 2) && !(p.x == 0 && p.y ==

0);,!

+ return isOnBn128(p) && !(p.x == 1 && p.y == 2) && !(p.x == 0 && p.y ==
0) && (p.x < FIELD_MODULUS && p.y < FIELD_MODULUS);,!

}

Discussion0xJemDuplicate ofhttps://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/185sherlock-admin4The protocol team fixed this issue in the following PRs/commits:https://github.com/Axis-Fi/moonraker/pull/13810xhashThe protocol team fixed this issue in the following PRs/commits:Axis-Fi/moonraker#138Fixed Now coordinates are checked to be less than FIELD_MODULUS
36

https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/auctions/EMPAM.sol#L250
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/auctions/EMPAM.sol#L250
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/lib/ECIES.sol#L138
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/lib/ECIES.sol#L138
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/lib/ECIES.sol#L133
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/lib/ECIES.sol#L133
https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/185
https://github.com/Axis-Fi/moonraker/pull/138
https://github.com/Axis-Fi/moonraker/pull/138

sherlock-admin4The Lead Senior Watson signed off on the fix.

37

IssueH-9: Downcasting touint96cancauseassets tobelost for some tokens
Source:https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/181
Found byFindEverythingX, hash, pseudoArtist
SummaryDowncasting to uint96 can cause assets to be lost for some tokens
Vulnerability DetailAfter summing the individual bid amounts, the total bid amount is downcasted touint96 without any checks
settlement_.totalIn = uint96(result.totalAmountIn);

uint96 can be overflowed for multiple well traded tokens:Eg:shiba inu : current price = $0.00003058 value of type(uint96).max tokens ~= 2ˆ96* 0.00003058 / 10ˆ18 == 2.5 million $Hence auctions that receive more than type(uint96).max amount of tokens will bedowncasted leading to extreme loss for the auctioner
ImpactThe auctioner will suffer extreme loss in situations where the auctions bring in>uint96 amount of tokens
Code Snippetdowncasting totalAmountIn to uint96https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/auctions/EMPAM.sol#L825
Tool usedManual Review

38

https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/181
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/auctions/EMPAM.sol#L825
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/auctions/EMPAM.sol#L825

RecommendationUse a higher type or warn the user's of the limitations on the auction sizes
Discussion0xJemDuplicate of #34OightyPretty similar to #209. Might be a duplicate.nevillehuangAgree both hinges on a high totalAmountInkosedogusEscalateSince there are minutes until the end of auction period, I might miss something, ifthat is the case sorry about that.
_settle calls _getLotMarginalPrice to get the totalAmountIn. The loop which adds
amountIn's to totalAmountIn does not add every individual bid, if the latest bid filledthe capacity loop breaks. capacity is taken from lotData as we can see:
uint256 capacity = lotData[lotId_].capacity;

And the capacity in lotData is uint96:
mapping(uint96 id => Lot lot) public lotData;

...
struct Lot {

uint48 start; // 6 +
uint48 conclusion; //
uint8 quoteTokenDecimals;
uint8 baseTokenDecimals;
bool capacityInQuote;
uint96 capacity;
uint96 sold;
uint96 purchased;
uint96 partialPayout;

}

Hence the capacity itself is below max value of uint96 inherently, and if we exceedcapacity with the latest bid, then loop breaks. So what happens to latest bid? It's
39

bidId is recorded and it is only partially filled, the excess is removed from
totalAmountIn as we can see below:
if (result.capacityExpended >= capacity) {

result.marginalPrice = price;
result.marginalBidId = bidId;
if (result.capacityExpended > capacity) {

result.partialFillBidId = bidId;
}
break;

if (result.partialFillBidId != 0) {
// Load routing and bid data
Bid storage bidData = bids[lotId_][result.partialFillBidId];

// Set the bidder on for the partially filled bid
settlement_.pfBidder = bidData.bidder;
settlement_.pfReferrer = bidData.referrer;

// Calculate the payout and refund amounts
uint256 fullFill =

Math.mulDivDown(uint256(bidData.amount), baseScale,
result.marginalPrice);,!

uint256 excess = result.capacityExpended - capacity;
settlement_.pfPayout = uint96(fullFill - excess);
settlement_.pfRefund =

uint96(Math.mulDivDown(uint256(bidData.amount), excess, fullFill));

// Reduce the total amount in by the refund amount
result.totalAmountIn -= settlement_.pfRefund;

Hence it seems like totalAmountIn can not possibly pass capacity which is uint96. Ifit can not pass uint96, there can't be any overflow.sherlock-admin2EscalateSince there are minutes until the end of auction period, I might misssomething, if that is the case sorry about that.
_settle calls _getLotMarginalPrice to get the totalAmountIn. The loopwhich adds amountIn's to totalAmountIn does not add every individualbid, if the latest bid filled the capacity loop breaks. capacity is taken fromlotData as we can see:
uint256 capacity = lotData[lotId_].capacity;

40

And the capacity in lotData is uint96:
mapping(uint96 id => Lot lot) public lotData;

...
struct Lot {

uint48 start; // 6 +
uint48 conclusion; //
uint8 quoteTokenDecimals;
uint8 baseTokenDecimals;
bool capacityInQuote;
uint96 capacity;
uint96 sold;
uint96 purchased;
uint96 partialPayout;

}

Hence the capacity itself is below max value of uint96 inherently, and ifwe exceed capacity with the latest bid, then loop breaks. So whathappens to latest bid? It's bidId is recorded and it is only partially filled,the excess is removed from totalAmountIn as we can see below:
if (result.capacityExpended >= capacity) {

result.marginalPrice = price;
result.marginalBidId = bidId;
if (result.capacityExpended > capacity) {

result.partialFillBidId = bidId;
}
break;

if (result.partialFillBidId != 0) {
// Load routing and bid data
Bid storage bidData = bids[lotId_][result.partialFillBidId];

// Set the bidder on for the partially filled bid
settlement_.pfBidder = bidData.bidder;
settlement_.pfReferrer = bidData.referrer;

// Calculate the payout and refund amounts
uint256 fullFill =

Math.mulDivDown(uint256(bidData.amount), baseScale,
result.marginalPrice);,!

uint256 excess = result.capacityExpended - capacity;
settlement_.pfPayout = uint96(fullFill - excess);
settlement_.pfRefund =

uint96(Math.mulDivDown(uint256(bidData.amount), excess, fullFill));

41

// Reduce the total amount in by the refund amount
result.totalAmountIn -= settlement_.pfRefund;

Hence it seems like totalAmountIn can not possibly pass capacity whichis uint96. If it can not pass uint96, there can't be any overflow.You've created a valid escalation!To remove the escalation from consideration: Delete your comment.You may delete or edit your escalation comment anytime before the 48-hourescalation window closes. After that, the escalation becomes final.kosedogusSince there are minutes until the end of auction period, I might misssomething, if that is the case sorry about that.sherlock-admin4The protocol team fixed this issue in the following PRs/commits:https://github.com/Axis-Fi/moonraker/pull/130nevillehuang@kosedogus I do not quite get your escalation point. Maybe a PoC could help medecipher it. I see a clear loss of funds here from downcasting.Cc @10xhash @OightyOightyAdding a bunch of uint96 amounts together can exceed type(uint96).max socasting totalAmountIn from a uint256 to a uint96 can overflow.kosedogusWhat I was saying, capacity is itself uint96.During loop that adds amountIn'stogether, everything copied as a uint256 and calculations are done with uint256 sothat overflow won't occur. If adding a bid to totalAmountIn made it pass capacity(which is normally uint96, but for the purpose of preventing overflow it is copied asuint256 before this check), then loop breaks. The amount that exceeds capacityremoved from totalAmountIn before it is downcasted to uint96. So totalAmountIncan be at most same with capacity in the end, which is uint96. So there won't beoverflow.Evert0x@nevillehuang any reply to the latest comment?nevillehuang
42

https://github.com/Axis-Fi/moonraker/pull/130

@kosedogus @10xhash Could you guys verify the escalation comment? Based oncomment here overflow is still possible no on the last bid added correct? I think aPoC could verify the claim and the issue.10xhash@kosedogus @10xhash Could you guys verify the escalation comment?Based on comment here overflow is still possible no on the last bidadded correct? I think a PoC could verify the claim and the issue.The capacity is the amount of base token the seller wants to sell while amountIn isthe amount of quote tokens that are paid by buyers. So the uint96 constrain oncapacity is not related with totalAmountInEg: uint96 capacity = 3 * 1e6 * 1e18; // 3million uint price = 32702 ; // price of usd inshiba uint totalAmountIn = capacity * price ==98106000000000000000000000000; // > uint96.maxthis totalAmountIn can be sum of smaller bids ie. 10 bids each of9810600000000000000000000000, where each is less than uint96.maxkosedogusYeah it was an oversight from my side I guess, thank you for clarification :)0xJemtotalAmountIn is the sum of amountIn from bids (each of which is maximum uint96),and can overflow uint96. The lot capacity is unrelated to this.10xhashThe protocol team fixed this issue in the following PRs/commits:Axis-Fi/moonraker#130Fixed uint256 is now used avoiding the unsafe castingsherlock-admin4The Lead Senior Watson signed off on the fix.Evert0x@kosedogus do I understand correctly that you agree the issue is valid?kosedogus@Evert0x yes sirEvert0xResult: High Has Duplicatessherlock-admin3
43

https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/181#issuecomment-2049888416
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/auctions/EMPAM.sol#L655
https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/181#issuecomment-2049888416
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/auctions/EMPAM.sol#L655
https://github.com/Axis-Fi/moonraker/pull/130

Escalations have been resolved successfully!Escalation status:• kosedogus: rejected

44

https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/181/#issuecomment-2048379367

IssueH-10: Incorrect prefundingRefundcalculationwill dis-allow claiming
Source:https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/187
Found byether_sky, hash, joicygiore
SummaryIncorrect prefundingRefund calculation will lead to underflow and hence disallowingclaiming
Vulnerability DetailThe prefundingRefund variable calculation inside the claimProceeds function isincorrect
function claimProceeds(

uint96 lotId_,
bytes calldata callbackData_

) external override nonReentrant {

...

(uint96 purchased_, uint96 sold_, uint96 payoutSent_) =
getModuleForId(lotId).claimProceeds(lotId_);

....

// Refund any unused capacity and curator fees to the address dictated by
the callbacks address,!

// By this stage, a partial payout (if applicable) and curator fees have
been paid, leaving only the payout amount (`totalOut`) remaining.,!

uint96 prefundingRefund = routing.funding + payoutSent_ - sold_;
unchecked {

routing.funding -= prefundingRefund;
}

Here sold is the total base quantity that has been sold to the bidders. Unlikerequired, the routing.funding variable need not be holding capacity + (0,curator
fees) since it is decremented every time a payout of a bid is claimed

45

https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/187

function claimBids(uint96 lotId_, uint64[] calldata bidIds_) external override
nonReentrant {,!

....

if (bidClaim.payout > 0) {

...

// Reduce funding by the payout amount
unchecked {

routing.funding -= bidClaim.payout;
}

ExampleCapacity = 100 prefunded, hence routing.funding == 100 initially Sold = 90 and nopartial fill/curation All bidders claim before the claimProceed function is invokedHence routing.funding = 100 - 90 == 10 When claimProceeds is invoked, underflowand revert:uint96 prefundingRefund = routing.funding + payoutSent_ - sold_ == 10 + 0 - 90
ImpactClaim proceeds function is broken. Sellers won't be able to receive the proceedings
Code Snippetwrong calculationhttps://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/AuctionHouse.sol#L604
Tool usedManual Review
RecommendationChange the calculation to:
uint96 prefundingRefund = capacity - sold_ + curatorFeesAdjustment (how much was

prefunded initially - how much will be sent out based on capacity - sold),!

46

https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/AuctionHouse.sol#L604
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/AuctionHouse.sol#L604

Discussionsherlock-admin4The protocol team fixed this issue in the following PRs/commits:https://github.com/Axis-Fi/moonraker/pull/14010xhashThe protocol team fixed this issue in the following PRs/commits:Axis-Fi/moonraker#140Fixed Seller refund calculation is changed to uint256 prefundingRefund =
capacity_ - sold_ + maxCuratorPayout - curatorPayoutsherlock-admin4The Lead Senior Watson signed off on the fix.

47

https://github.com/Axis-Fi/moonraker/pull/140
https://github.com/Axis-Fi/moonraker/pull/140

Issue M-1: Attacker can forbid users to get refunded ifsends enough bids on the EMPAMmodule
Source:https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/41
Found by0xR360, 0xmuxyz, FindEverythingX, shaka
SummaryWhen an auction starts an attacker can send enough encrypted bids to make futureusers that bid unable to be refunded.
Vulnerability DetailAn attacker can send valid bids with amounts equal to the minimum allowedamount for a bid. If enough bids are sent, users that bid after him won't be able toget refunded if they want to. Scenario:• Attacker sends lots of bids just after auction creation.• User sends bids• User wants to refund some of them: The _refundBid function on the EMPAMmodule loops through all the bids to find the requested one, then pops it outof the decryption array. If there are too many bids before the one we arelooking fur, gas can run out.
ImpactBreaks the refund functionality. User won't be able to refund bid. Possible loss offunds.
Code Snippethttps://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/auctions/EMPAM.sol#L284-L305Putting this test on the EMPA refund bid tests file can show how its performed.
function test_audit_dos_bids() public givenLotIsCreated givenLotHasStarted

givenBidIsCreated(2e18, 1e18){,!

uint bidNums = 60000;

48

https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/41
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/auctions/EMPAM.sol#L284-L305
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/auctions/EMPAM.sol#L284-L305
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/test/modules/auctions/EMPA/refundBid.t.sol

//worst case scenario for attack is: max limit for block, only tx in the
block. This doesnt take in account the gas spent on entrypoint.,!

uint ETH_GAS_LIMIT = 30_000_000;

// attacker bids
for (uint i=0;i < bidNums; i++)

_createBid(1e18, 1e18); //amount can be as small as possible

uint64 normalUserBid = _createBid(2e18, 1e18);
uint256 gasBefore = gasleft();

vm.prank(address(_auctionHouse));
uint256 refundAmount = _module.refundBid(_lotId, normalUserBid, _BIDDER);
uint256 gasAfter = gasleft();

uint256 gasUsed = gasBefore - gasAfter;
assertEq(gasUsed > ETH_GAS_LIMIT,true, "out of gas");

}

Tool usedManual Review
RecommendationInstead of looping through each bidId, holding the index position of a nonencrypted bid on a mapping should solve it. The mapping should be from bidId toits position in the array. When a bid is refunded, this position should also bechanged for its replacement.
DiscussionnevillehuangBelieve #41 and #237 to not be duplicates based on different fix and code logicinvolved for (refunding/decrypting/settling mechanisms)The fix isn't the same because we need to remove a loop from therefundBid function. The settle fix involves refactoring to allow a multi-txnprocess or decreasing the gas cost of it. Not really a good way to removethe loop from settlesherlock-admin4The protocol team fixed this issue in the following PRs/commits:https://github.com/Axis-Fi/moonraker/pull/145

49

https://github.com/Axis-Fi/moonraker/pull/145

10xhashThe protocol team fixed this issue in the following PRs/commits:Axis-Fi/moonraker#145Fixed Now the index of the bid to be refunded is passed avoiding the iteration ofthe entire list.sherlock-admin4The Lead Senior Watson signed off on the fix.

50

https://github.com/Axis-Fi/moonraker/pull/145

IssueM-2: If pfBiddergetsblacklisted thesettlementpro-cess would be broken and every other bidders and theseller would lose their funds
Source:https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/90
Found byAvci, Aymen0909, FindEverythingX, bhilare_, jecikpo, merlin, poslednaya, seeques
SummaryDuring batch auction settlement, the bidder whos bid was partially filled gets therefund amount in quote tokens and his payout in base immediately. In case if quoteor base is a token with blacklisted functionality (e.g. USDC) and bidder's accountgets blacklisted after the bid was submitted, the settlement would be bricked andall bidders and the seller would lose their tokens/proceeds.
Vulnerability DetailIn the AuctionHouse.settlement() function there is a check if the bid was partiallyfilled, in which case the function handles refund and payout immediately:

// Check if there was a partial fill and handle the payout + refund
if (settlement.pfBidder != address(0)) {

// Allocate quote and protocol fees for bid
_allocateQuoteFees(

feeData.protocolFee,
feeData.referrerFee,
settlement.pfReferrer,
routing.seller,
routing.quoteToken,
// Reconstruct bid amount from the settlement price and the amount out
uint96(

Math.mulDivDown(
settlement.pfPayout, settlement.totalIn, settlement.totalOut

)
)

);

// Reduce funding by the payout amount
unchecked {

routing.funding -= uint96(settlement.pfPayout);

51

https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/90

}

// Send refund and payout to the bidder
//@audit if pfBidder gets blacklisted the settlement is broken
Transfer.transfer(

routing.quoteToken, settlement.pfBidder, settlement.pfRefund, false
);

_sendPayout(settlement.pfBidder, settlement.pfPayout, routing,
auctionOutput);,!

}

If pfBidder gets blacklisted after he submitted his bid, the call to settle() wouldrevert. There is no way for other bidders to get a refund for the auction sincesettlement can only happen after auction conclusion but the refundBid() functionneeds to be called before the conclusion:
function settle(uint96 lotId_)

external
virtual
override
onlyInternal
returns (Settlement memory settlement, bytes memory auctionOutput)

{
// Standard validation
revertIfLotInvalid(lotId);
revertIfBeforeLotStart(lotId);
revertIfLotActive(lotId); //@audit
revertIfLotSettled(lotId);

...
}

function refundBid(
uint96 lotId_,
uint64 bidId_,
address caller_

) external override onlyInternal returns (uint96 refund) {
// Standard validation
revertIfLotInvalid(lotId);
revertIfBeforeLotStart(lotId);
revertIfBidInvalid(lotId, bidId_);
revertIfNotBidOwner(lotId, bidId_, caller_);
revertIfBidClaimed(lotId, bidId_);
revertIfLotConcluded(lotId); //@audit

52

// Call implementation-specific logic
return _refundBid(lotId_, bidId_, caller_);

}

Also, the claimBids function would also revert since the lot wasn't settled and theseller wouldn't be able to get his prefunding back since he can neither cancel() thelot nor claimProceeds().
ImpactLoss of funds
Code Snippethttps://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/AuctionHouse.sol#L503-L529 https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/Auction.sol#L501-L516https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/Auction.sol#L589-L600 https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/Auction.sol#L733-L741https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/auctions/EMPAM.sol#L885-L891
Tool usedManual Review
RecommendationSeparate the payout and refunding logic for pfBidder from the settlement process.
Discussionsherlock-admin4The protocol team fixed this issue in the following PRs/commits:https://github.com/Axis-Fi/moonraker/pull/14010xhashThe protocol team fixed this issue in the following PRs/commits:Axis-Fi/moonraker#140Fixed Now the payment of partial bid is separated from the settlementsherlock-admin4

53

https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/AuctionHouse.sol#L503-L529
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/AuctionHouse.sol#L503-L529
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/Auction.sol#L501-L516
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/Auction.sol#L501-L516
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/Auction.sol#L589-L600
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/Auction.sol#L589-L600
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/Auction.sol#L733-L741
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/Auction.sol#L733-L741
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/auctions/EMPAM.sol#L885-L891
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/auctions/EMPAM.sol#L885-L891
https://github.com/Axis-Fi/moonraker/pull/140
https://github.com/Axis-Fi/moonraker/pull/140

The Lead Senior Watson signed off on the fix.

54

Issue M-3: Unsold tokens from a FPAM auction, will bestuck in the protocol, after the auction concludes
Source:https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/94
Found byAymen0909, FindEverythingX, cu5t0mPe0, dimulski, ether_sky, hash, jecikpo, qbs,seeques, ydlee
SummaryThe Axis-Finance protocol allows sellers to create two types of auctions: FPAM &EMPAM. An FPAM auction allows sellers to set a price, and a maxPayout, as well ascreate a prefunded auction. The seller of a FPAM auction can cancel it while it isstill active by calling the cancel function which in turn calls the cancelAuction()function. If the auction is prefunded, and canceled while still active, all remainingfunds will be transferred back to the seller. The problem arises if an FPAMprefunded auction is created, not all of the prefunded supply is bought by users,and the auction concludes. There is no way for the baseTokens still in the contract,to be withdrawn from the protocol, and they will be forever stuck in the
Axis-Finance protocol. As can be seen from the below code snippet cancelAuction() function checks if an auction is concluded, and if it is the function reverts.
function _revertIfLotConcluded(uint96 lotId_) internal view virtual {

// Beyond the conclusion time
if (lotData[lotId_].conclusion < uint48(block.timestamp)) {

revert Auction_MarketNotActive(lotId_);
}

// Capacity is sold-out, or cancelled
if (lotData[lotId_].capacity == 0) revert Auction_MarketNotActive(lotId_);

}

Vulnerability DetailGist After following the steps in the above mentioned gist add the following test tothe AuditorTests.t.sol file
function test_FundedPriceAuctionStuckFunds() public {

vm.startPrank(alice);
Veecode veecode = fixedPriceAuctionModule.VEECODE();
Keycode keycode = keycodeFromVeecode(veecode);

55

https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/94
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/bases/Auctioneer.sol#L301-L342
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/Auction.sol#L351-L364
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/Auction.sol#L351-L364
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/Auction.sol#L351-L364
https://gist.github.com/AtanasDimulski/a47112fc7ae473fd69b42ba997819726
https://gist.github.com/AtanasDimulski/a47112fc7ae473fd69b42ba997819726

bytes memory _derivativeParams = "";
uint96 lotCapacity = 75_000_000_000e18; // this is 75 billion tokens
mockBaseToken.mint(alice, lotCapacity);
mockBaseToken.approve(address(auctionHouse), type(uint256).max);

FixedPriceAuctionModule.FixedPriceParams memory myStruct =
FixedPriceAuctionModule.FixedPriceParams({,!

price: uint96(1e18),
maxPayoutPercent: uint24(1e5)

});

Auctioneer.RoutingParams memory routingA = Auctioneer.RoutingParams({
auctionType: keycode,
baseToken: mockBaseToken,
quoteToken: mockQuoteToken,
curator: curator,
callbacks: ICallback(address(0)),
callbackData: abi.encode(""),
derivativeType: toKeycode(""),
derivativeParams: _derivativeParams,
wrapDerivative: false,
prefunded: true

});

Auction.AuctionParams memory paramsA = Auction.AuctionParams({
start: 0,
duration: 1 days,
capacityInQuote: false,
capacity: lotCapacity,
implParams: abi.encode(myStruct)

});

string memory infoHashA;
auctionHouse.auction(routingA, paramsA, infoHashA);
vm.stopPrank();

vm.startPrank(bob);
uint96 fundingBeforePurchase;
uint96 fundingAfterPurchase;
(,fundingBeforePurchase,,,,,,,) = auctionHouse.lotRouting(0);
console2.log("Here is the funding normalized before purchase: ",

fundingBeforePurchase/1e18);,!

mockQuoteToken.mint(bob, 10_000_000_000e18);
mockQuoteToken.approve(address(auctionHouse), type(uint256).max);
Router.PurchaseParams memory purchaseParams = Router.PurchaseParams({

recipient: bob,
referrer: address(0),

56

lotId: 0,
amount: 10_000_000_000e18,
minAmountOut: 10_000_000_000e18,
auctionData: abi.encode(0),
permit2Data: ""

});
bytes memory callbackData = "";
auctionHouse.purchase(purchaseParams, callbackData);
(,fundingAfterPurchase,,,,,,,) = auctionHouse.lotRouting(0);
console2.log("Here is the funding normalized after purchase: ",

fundingAfterPurchase/1e18);,!

console2.log("Balance of seler of quote tokens: ",
mockQuoteToken.balanceOf(alice)/1e18);,!

console2.log("Balance of bob in base token: ",
mockBaseToken.balanceOf(bob)/1e18);,!

console2.log("Balance of auction house in base token: ",
mockBaseToken.balanceOf(address(auctionHouse)) /1e18);,!

skip(86401);
vm.stopPrank();

vm.startPrank(alice);
vm.expectRevert(

abi.encodeWithSelector(Auction.Auction_MarketNotActive.selector, 0)
);
auctionHouse.cancel(uint96(0), callbackData);
vm.stopPrank();

}

Logs:
Here is the funding normalized before purchase: 75000000000
Here is the funding normalized after purchase: 65000000000
Balance of seler of quote tokens: 10000000000
Balance of bob in base token: 10000000000
Balance of auction house in base token: 65000000000

To run the test use: forge test -vvv --mt test_FundedPriceAuctionStuckFunds

ImpactIf a prefunded FPAM auction concludes and there are still tokens, not bought fromthe users, they will be stuck in the Axis-Finance protocol.
Code Snippet

57

Tool usedManual Review & Foundry
RecommendationImplement a function, that allows sellers to withdraw the amount left for aprefunded FPAM auction they have created, once the auction has concluded.
Discussionsherlock-admin4The protocol team fixed this issue in the following PRs/commits:https://github.com/Axis-Fi/moonraker/pull/13210xhashThe protocol team fixed this issue in the following PRs/commits:Axis-Fi/moonraker#132Fixed Now FPAM auctions are not prefundedsherlock-admin4The Lead Senior Watson signed off on the fix.

58

https://github.com/Axis-Fi/moonraker/pull/132
https://github.com/Axis-Fi/moonraker/pull/132

Issue M-4: User's can be grieved by not submitting theprivate key
Source:https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/174
Found byFindEverythingX, devblixt, hash, jecikpo, merlin, novaman33, underdog
SummaryUser's can be grieved by not submitting the private key
Vulnerability DetailBids cannot be refunded once the auction concludes. And bids cannot be claimeduntil the auction has been settled. Similarly a EMPAM auction cannot be cancelledonce started.
function claimBids(

uint96 lotId_,
uint64[] calldata bidIds_

)
external
override
onlyInternal
returns (BidClaim[] memory bidClaims, bytes memory auctionOutput)

{
// Standard validation
revertIfLotInvalid(lotId);
revertIfLotNotSettled(lotId);

function refundBid(
uint96 lotId_,
uint64 bidId_,
address caller_

) external override onlyInternal returns (uint96 refund) {
// Standard validation
revertIfLotInvalid(lotId);
revertIfBeforeLotStart(lotId);
revertIfBidInvalid(lotId, bidId_);
revertIfNotBidOwner(lotId, bidId_, caller_);
revertIfBidClaimed(lotId, bidId_);

59

https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/174

revertIfLotConcluded(lotId);

function _cancelAuction(uint96 lotId_) internal override {
// Validation
// Batch auctions cannot be cancelled once started, otherwise the seller
could cancel the auction after bids have been submitted,!

revertIfLotActive(lotId);

function cancelAuction(uint96 lotId_) external override onlyInternal {
// Validation
revertIfLotInvalid(lotId);
revertIfLotConcluded(lotId);

function _settle(uint96 lotId_)
internal
override
returns (Settlement memory settlement_, bytes memory auctionOutput_)

{
// Settle the auction
// Check that auction is in the right state for settlement
if (auctionData[lotId_].status != Auction.Status.Decrypted) {

revert Auction_WrongState(lotId_);
}

For EMPAM auctions, the private key associated with the auction has to besubmitted before the auction can be settled. In auctions where the private key isheld by the seller, they can grief the bidder's or in cases where a key managementsolution is used, both seller and bidder's can be griefed by not submitting theprivate key.
ImpactUser's will not be able to claim their assets in case the private key holder doesn'tsubmit the key for decryption
Code Snippethttps://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/auctions/EMPAM.sol#L747-L756
Tool usedManual Review

60

https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/auctions/EMPAM.sol#L747-L756
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/auctions/EMPAM.sol#L747-L756
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/auctions/EMPAM.sol#L747-L756

RecommendationAcknowledge the risk involved for the seller and bidder
Discussionsherlock-admin4The protocol team fixed this issue in the following PRs/commits:https://github.com/Axis-Fi/moonraker/pull/14310xhashThe protocol team fixed this issue in the following PRs/commits:Axis-Fi/moonraker#143Fixed Now bidder's can claim refund unless the private key is submitted following adedicatedSettlePeriodsherlock-admin4The Lead Senior Watson signed off on the fix.

61

https://github.com/Axis-Fi/moonraker/pull/143
https://github.com/Axis-Fi/moonraker/pull/143

IssueM-5: Bidder's payout claim could fail due to valida-tion checks in LinearVesting
Source:https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/178
Found byAymen0909, FindEverythingX, ether_sky, hash, sl1
SummaryBidder's payout claim will fail due to validation checks in LinearVesting after theexpiry timestamp
Vulnerability DetailBidder's payout are sent by internally calling the _sendPayout function. In case thepayout is a derivative which has already expired, this will revert due to thevalidation check of block.timestmap < expiry present in the mint function ofLinearVesting derivative

function _sendPayout(
address recipient_,
uint256 payoutAmount_,
Routing memory routingParams_,
bytes memory

) internal {

if (fromVeecode(derivativeReference) == bytes7("")) {
Transfer.transfer(baseToken, recipient_, payoutAmount_, true);

}
else {

DerivativeModule module =
DerivativeModule(_getModuleIfInstalled(derivativeReference));,!

Transfer.approve(baseToken, address(module), payoutAmount_);

=> module.mint(
recipient_,
address(baseToken),
routingParams_.derivativeParams,
payoutAmount_,

62

https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/178

routingParams_.wrapDerivative
);

function mint(
address to_,
address underlyingToken_,
bytes memory params_,
uint256 amount_,
bool wrapped_

)
external
virtual
override
returns (uint256 tokenId_, address wrappedAddress_, uint256 amountCreated_)

{
if (amount_ == 0) revert InvalidParams();

VestingParams memory params = _decodeVestingParams(params_);

if (_validate(underlyingToken_, params) == false) {
revert InvalidParams();

}

function _validate(
address underlyingToken_,
VestingParams memory data_

) internal view returns (bool) {

....

=> if (data_.expiry < block.timestamp) return false;

// Check that the underlying token is not 0
if (underlyingToken_ == address(0)) return false;

return true;
}

Hence the user's won't be able to claim their payouts of an auction once thederivative has expired. For EMPAM auctions, a seller can also wait till thistimestmap passes before revealing their private key which will disallow biddersfrom claiming their rewards.
63

ImpactBidder's won't be able claim payouts from auction after the derivative expirytimestamp
Code Snippet_sendPayout invoking mint function on derivative to send payoutshttps://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/AuctionHouse.sol#L823-L829linear vesting derivative expiry checks https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/derivatives/LinearVesting.sol#L521-L541
Tool usedManual Review
RecommendationAllow to mint tokens even after expiry of the vesting token / deploy the derivativetoken first itself and when making the payout, transfer the base token directlyincase the expiry time is passed
Discussionsherlock-admin4The protocol team fixed this issue in the following PRs/commits:https://github.com/Axis-Fi/moonraker/pull/11610xhashThe protocol team fixed this issue in the following PRs/commits:Axis-Fi/moonraker#116Fixed The expiry check is now removedsherlock-admin4The Lead Senior Watson signed off on the fix.

64

https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/AuctionHouse.sol#L823-L829
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/AuctionHouse.sol#L823-L829
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/derivatives/LinearVesting.sol#L521-L541
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/derivatives/LinearVesting.sol#L521-L541
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/modules/derivatives/LinearVesting.sol#L521-L541
https://github.com/Axis-Fi/moonraker/pull/116
https://github.com/Axis-Fi/moonraker/pull/116

Issue M-6: Inaccurate value is used for partial fill quoteamount when calculating fees
Source:https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/182
Found byhash
SummaryInaccurate value is used for partial fill quote amount when calculating fees whichcan cause reward claiming / payment withdrawal to revert
Vulnerability DetailThe fees of an auction is managed as follows:1. Whenever a bidder claims their payout, calculate the amount of quote tokensthat should be collected as fees (instead of giving the entire quote amount tothe seller) and add this to the protocol / referrers rewards

function claimBids(uint96 lotId_, uint64[] calldata bidIds_) external
override nonReentrant {,!

....

for (uint256 i = 0; i < bidClaimsLen; i++) {
Auction.BidClaim memory bidClaim = bidClaims[i];

if (bidClaim.payout > 0) {

=> _allocateQuoteFees(
protocolFee,
referrerFee,
bidClaim.referrer,
routing.seller,
routing.quoteToken,

=> bidClaim.paid
);

Here bidClaim.paid is the amount of quote tokens that was transferred in by thebidder for the purchase
65

https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/182

function _allocateQuoteFees(
uint96 protocolFee_,
uint96 referrerFee_,
address referrer_,
address seller_,
ERC20 quoteToken_,
uint96 amount_

) internal returns (uint96 totalFees) {
// Calculate fees for purchase
(uint96 toReferrer, uint96 toProtocol) = calculateQuoteFees(

protocolFee_, referrerFee_, referrer_ != address(0) && referrer_ !=
seller_, amount_,!

);

// Update fee balances if non-zero
if (toReferrer > 0) rewards[referrer_][quoteToken_] += uint256(toReferrer);
if (toProtocol > 0) rewards[_protocol][quoteToken_] += uint256(toProtocol);

return toReferrer + toProtocol;
}

2. Whenever the seller calls claimProceeds to withdraw the amount of quotetokens received from the auction, subtract the quote fees and give out theremaining
function claimProceeds(

uint96 lotId_,
bytes calldata callbackData_

) external override nonReentrant {

....

uint96 totalInLessFees;
{

=> (, uint96 toProtocol) = calculateQuoteFees(
lotFees[lotId_].protocolFee, lotFees[lotId_].referrerFee, false,

purchased_,!

);
unchecked {

=> totalInLessFees = purchased_ - toProtocol;
}

}

Here purchased is the total quote token amount that was collected for this auction.
66

In case the fees calculated in claimProceeds is less than the sum of fees allocatedto the protocol / referrer via claimBids, there will be a mismatch causing the sum of(fees allocated + seller purchased quote tokens) to be greater than the total quotetoken amount that was transferred in for the auction. This could cause either theprotocol/referrer to not obtain their rewards or the seller to not be able to claim thepurchased tokens in case there are no excess quote token present in the auctionhouse contract.In case, totalPurchased is >= sum of all individual bid quote token amounts (as it issupposed to be), the fee allocation would be correct. But due to the inaccuratecomputation of the input quote token amount associated with a partial fill, it ispossible for the above scenario (ie. fees calculated in claimProceeds is less
than the sum of fees allocated to the protocol / referrer via claimBids) tooccur

function settle(uint96 lotId_) external override nonReentrant {

....

if (settlement.pfBidder != address(0)) {

_allocateQuoteFees(
feeData.protocolFee,
feeData.referrerFee,
settlement.pfReferrer,
routing.seller,
routing.quoteToken,

// @audit this method of calculating the input quote token
amount associated with a partial fill is not accurate,!

uint96(
=> Math.mulDivDown(

settlement.pfPayout, settlement.totalIn,
settlement.totalOut,!

)
)

The above method of calculating the input token amount associated with a partialfill can cause this value to be higher than the acutal value and hence the feesallocated will be less than what the fees that will be captured from the seller will be
POCApply the following diff to test/AuctionHouse/AuctionHouseTest.sol and run forge
test --mt testHash_SpecificPartialRounding -vv

67

It is asserted that the tokens allocated as fees is greater than the tokens that willbe captured from a seller for fees
diff --git a/moonraker/test/AuctionHouse/AuctionHouseTest.sol

b/moonraker/test/AuctionHouse/AuctionHouseTest.sol,!

index 44e717d..9b32834 100644
--- a/moonraker/test/AuctionHouse/AuctionHouseTest.sol
+++ b/moonraker/test/AuctionHouse/AuctionHouseTest.sol
@@ -6,6 +6,8 @@ import {Test} from "forge-std/Test.sol";
import {ERC20} from "solmate/tokens/ERC20.sol";
import {Transfer} from "src/lib/Transfer.sol";
import {FixedPointMathLib} from "solmate/utils/FixedPointMathLib.sol";

+import {SafeCastLib} from "solmate/utils/SafeCastLib.sol";
+

// Mocks
import {MockAtomicAuctionModule} from

"test/modules/Auction/MockAtomicAuctionModule.sol";,!

@@ -134,6 +136,158 @@ abstract contract AuctionHouseTest is Test, Permit2User {
_bidder = vm.addr(_bidderKey);

}

+ function testHash_SpecificPartialRounding() public {
+ /*
+ capacity 1056499719758481066
+ previous total amount 1000000000000000000
+ bid amount 2999999999999999999997
+ price 2556460687578254783645
+ fullFill 1173497411705521567
+ excess 117388857750942341
+ pfPayout 1056108553954579226
+ pfRefund 300100000000000000633
+ new totalAmountIn 2700899999999999999364
+ usedContributionForQuoteFees 2699900000000000000698
+ quoteTokens1 1000000
+ quoteTokens2 2699900000
+ quoteTokensAllocated 2700899999
+ */
+
+ uint bidAmount = 2999999999999999999997;
+ uint marginalPrice = 2556460687578254783645;
+ uint capacity = 1056499719758481066;
+ uint previousTotalAmount = 1000000000000000000;
+ uint baseScale = 1e18;
+
+ // hasn't reached the capacity with previousTotalAmount
+ assert(

68

+ FixedPointMathLib.mulDivDown(previousTotalAmount, baseScale,
marginalPrice) <,!

+ capacity
+);
+
+ uint capacityExpended = FixedPointMathLib.mulDivDown(
+ previousTotalAmount + bidAmount,
+ baseScale,
+ marginalPrice
+);
+ assert(capacityExpended > capacity);
+
+ uint totalAmountIn = previousTotalAmount + bidAmount;
+
+ uint256 fullFill = FixedPointMathLib.mulDivDown(
+ uint256(bidAmount),
+ baseScale,
+ marginalPrice
+);
+
+ uint256 excess = capacityExpended - capacity;
+
+ uint pfPayout = SafeCastLib.safeCastTo96(fullFill - excess);
+ uint pfRefund = SafeCastLib.safeCastTo96(
+ FixedPointMathLib.mulDivDown(uint256(bidAmount), excess, fullFill)
+);
+
+ totalAmountIn -= pfRefund;
+
+ uint usedContributionForQuoteFees;
+ {
+ uint totalOut = SafeCastLib.safeCastTo96(
+ capacityExpended > capacity ? capacity : capacityExpended
+);
+
+ usedContributionForQuoteFees = FixedPointMathLib.mulDivDown(
+ pfPayout,
+ totalAmountIn,
+ totalOut
+);
+ }
+
+ {
+ uint actualContribution = bidAmount - pfRefund;
+
+ // acutal contribution is less than the usedContributionForQuoteFees
+ assert(actualContribution < usedContributionForQuoteFees);

69

+ console2.log("actual contribution", actualContribution);
+ console2.log(
+ "used contribution for fees",
+ usedContributionForQuoteFees
+);
+ }
+
+ // calculating quote fees allocation
+ // quote fees captured from the seller
+ {
+ (, uint96 quoteTokensAllocated) = calculateQuoteFees(
+ 1e3,
+ 0,
+ false,
+ SafeCastLib.safeCastTo96(totalAmountIn)
+);
+
+ // quote tokens that will be allocated for the earlier bid
+ (, uint96 quoteTokens1) = calculateQuoteFees(
+ 1e3,
+ 0,
+ false,
+ SafeCastLib.safeCastTo96(previousTotalAmount)
+);
+
+ // quote tokens that will be allocated for the partial fill
+ (, uint96 quoteTokens2) = calculateQuoteFees(
+ 1e3,
+ 0,
+ false,
+ SafeCastLib.safeCastTo96(usedContributionForQuoteFees)
+);
+
+ console2.log("quoteTokens1", quoteTokens1);
+ console2.log("quoteTokens2", quoteTokens2);
+ console2.log("quoteTokensAllocated", quoteTokensAllocated);
+
+ // quoteToken fees allocated is greater than what will be captured

from seller,!

+ assert(quoteTokens1 + quoteTokens2 > quoteTokensAllocated);
+ }
+ }
+
+ function calculateQuoteFees(
+ uint96 protocolFee_,
+ uint96 referrerFee_,
+ bool hasReferrer_,

70

+ uint96 amount_
+) public pure returns (uint96 toReferrer, uint96 toProtocol) {
+ uint _FEE_DECIMALS = 5;
+ uint96 feeDecimals = uint96(_FEE_DECIMALS);
+
+ if (hasReferrer_) {
+ // In this case we need to:
+ // 1. Calculate referrer fee
+ // 2. Calculate protocol fee as the total expected fee amount minus

the referrer fee,!

+ // to avoid issues with rounding from separate fee calculations
+ toReferrer = uint96(
+ FixedPointMathLib.mulDivDown(amount_, referrerFee_, feeDecimals)
+);
+ toProtocol =
+ uint96(
+ FixedPointMathLib.mulDivDown(
+ amount_,
+ protocolFee_ + referrerFee_,
+ feeDecimals
+)
+) -
+ toReferrer;
+ } else {
+ // If there is no referrer, the protocol gets the entire fee
+ toProtocol = uint96(
+ FixedPointMathLib.mulDivDown(
+ amount_,
+ protocolFee_ + referrerFee_,
+ feeDecimals
+)
+);
+ }
+ }
+
+

// ===== Helper Functions ===== //

function _mulDivUp(uint96 mul1_, uint96 mul2_, uint96 div_) internal pure
returns (uint96) {,!

ImpactRewards might not be collectible or seller might not be able to claim the proceedsdue to lack of tokens
71

Code Snippetinaccurate computation of the input quote token value for allocating feeshttps://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/AuctionHouse.sol#L512-L515
Tool usedManual Review
RecommendationUse bidAmount - pfRefund as the quote token input amount value instead ofcomputing the current way
Discussionsherlock-admin4The protocol team fixed this issue in the following PRs/commits:https://github.com/Axis-Fi/moonraker/pull/14010xhashThe protocol team fixed this issue in the following PRs/commits:Axis-Fi/moonraker#140Fixed The partial bid amount for quote fees is now calculated as bidClaim.paid -
bidClaim.refundsherlock-admin4The Lead Senior Watson signed off on the fix.

72

https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/AuctionHouse.sol#L512-L515
https://github.com/sherlock-audit/2024-03-axis-finance/blob/cadf331f12b485bac184111cdc9ba1344d9fbf01/moonraker/src/AuctionHouse.sol#L512-L515
https://github.com/Axis-Fi/moonraker/pull/140
https://github.com/Axis-Fi/moonraker/pull/140

IssueM-7: Unsafe castingwithin _purchase function canresult in overflow
Source:https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/204
Found byFindEverythingX
SummaryUnsafe casting within _purchase function can result in overflow
Vulnerability DetailContract: FPAM.solThe _purchase function is invoked whenever a user wants to buy some tokens froman FPAM auction.Note how the amount_ parameter is from type uint96:https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/auctions/FPAM.sol#L128The payout is then calculated as follows:amount * 10ˆbaseTokenDecimals / pricehttps://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/auctions/FPAM.sol#L135The crux: The quote token can be with 6 decimals and the base token with 18decimals.This would then potentially result in an overflow and the payout is falsified.Consider the following PoC:amount = 1_000_000_000e6 (fees can be deducted or not, this does not matter forthis PoC)baseTokenDecimals = 18price = 1e4This price basically means, a user will receive 1e18 BASE tokens for 1e4 (0.01)QUOTE tokens, respectively a user must provide 1e4 (0.01) QUOTE tokens toreceive 1e18 BASE tokens

73

https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/204
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/auctions/FPAM.sol#L128
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/auctions/FPAM.sol#L128
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/auctions/FPAM.sol#L135
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/auctions/FPAM.sol#L135

The calculation would be as follows:1_000_000_000e6 * 1e18 / 1e4 = 1e29while uint96.max = 7.922. . . .e28Therefore, the result will be casted to uint96 and overflow, it would effectivelymanipulate the auction outcome, which can result in a loss of funds for the buyer,because he will receive less BASE tokens than expected (due to the overflow).It is clear that this calculation example can work on multiple different scenarios(even though only very limited because of the high bidding [amount] size) .However, using BASE token with 18 decimals and QUOTE token with 6 decimals willmore often result in such an issue.This issue is only rated as medium severity because the buyer can determine aminAmountOut parameter. The problem is however the auction is a fixed priceauction and the buyer already knows the price and the amount he provides, whichgives him exactly the fixed output amount. Therefore, there is usually absolutely noslippage necessity to be set by the buyer and lazy buyers might just set this to zero.
ImpactIMPACT:a) Loss of funds for buyer
Code Snippethttps://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/auctions/FPAM.sol#L128 https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/auctions/FPAM.sol#L135
Tool usedManual Review
RecommendationConsider simply switching to a uint256 approach, this should be adapted in theoverall architecture. The only important thing (as far as I have observed) is to makesure the heap mechanism does not overflow when calculating the relative values:https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/lib/MaxPriorityQueue.sol#L114

74

https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/auctions/FPAM.sol#L128
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/auctions/FPAM.sol#L128
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/auctions/FPAM.sol#L135
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/auctions/FPAM.sol#L135
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/lib/MaxPriorityQueue.sol#L114
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/lib/MaxPriorityQueue.sol#L114

Discussion0xJemI would rate this low priority.It is possible, but highly unlikely as it requires all of these conditions to be met:• The lot capacity would need to be close to the maximum (uint96 max)• The max payout needs to be 100%• The quote token decimals need to be low• The price needs to be lowOightyI do think this is valid. I'll leave it up to the judge to determine severity. The fact thatthe buyer can receive much fewer tokens than expected, even in an outlandishscenario, shouldn't be possible.sherlock-admin4The protocol team fixed this issue in the following PRs/commits:https://github.com/Axis-Fi/moonraker/pull/13010xhashThe protocol team fixed this issue in the following PRs/commits:Axis-Fi/moonraker#130Fixed uint256 is now used, avoiding the unsafe castingsherlock-admin4The Lead Senior Watson signed off on the fix.

75

https://github.com/Axis-Fi/moonraker/pull/130
https://github.com/Axis-Fi/moonraker/pull/130

Issue M-8: Settlement of batch auction can exceed thegas limit
Source:https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/237
Found by0xR360, Kose, MrjoryStewartBaxter, flacko, shaka
SummarySettlement of batch auction can exceed the gas limit, making it impossible to settlethe auction.
Vulnerability DetailWhen a batch auction (EMPAM) is settled, to calculate the lot marginal price, thecontract iterates over all bids until the capacity is reached or a bid below theminimum price is found.As some of the operations performed in the loop are gas-intensive, the contractmay run out of gas if the number of bids is too high.Note that additionally, there is another loop in the _settle function that iteratesover all the remaining bids to delete them from the queue. While this loopconsumes much less gas per iteration and would require the number of bids to bemuch higher to run out of gas, it adds to the problem.
ImpactSettlement of batch auction will revert, causing sellers and bidders to lose theirfunds.
Code Snippethttps://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/auctions/EMPAM.sol#L611-L651
Proof of conceptChange the minimum bid percent to 0.1% in the EmpaModuleTest contract in
EMPAModuleTest.sol.

76

https://github.com/sherlock-audit/2024-03-axis-finance-judging/issues/237
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/auctions/EMPAM.sol#L611-L651
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/auctions/EMPAM.sol#L772-L781
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/auctions/EMPAM.sol#L611-L651
https://github.com/sherlock-audit/2024-03-axis-finance/blob/main/moonraker/src/modules/auctions/EMPAM.sol#L611-L651

- uint24 internal constant _MIN_BID_PERCENT = 1000; // 1%
+ uint24 internal constant _MIN_BID_PERCENT = 100; // 0.1%

Add the following code to the contract EmpaModuleSettleTest in settle.t.sol andrun forge test --mt test_settleOog.
modifier givenBidsCreated() {

uint96 amountOut = 0.01e18;
uint96 amountIn = 0.01e18;
uint256 numBids = 580;

for (uint256 i = 0; i < numBids; i++) {
_createBid(_BIDDER, amountIn, amountOut);

}

_;
}

function test_settleOog() external
givenLotIsCreated
givenLotHasStarted
givenBidsCreated
givenLotHasConcluded
givenPrivateKeyIsSubmitted
givenLotIsDecrypted

{
uint256 gasBefore = gasleft();
_settle();

assert(gasBefore - gasleft() > 30_000_000);
}

Tool usedManual Review
RecommendationAn easy way to tackle the issue would be to change the _MIN_BID_PERCENT valuefrom 10 (0.01%) to 1000 (1%) in the EMPAM.sol contract, which would limit thenumber of iterations to 100.A more appropriate solution, if it is not acceptable to increase the min bid percent,would be to change the settlement logic so that can be handled in batches of bids

77

to avoid running out of gas.In both cases, it would also be recommended to limit the number of decrypted bidsthat can be deleted from the queue in a single transaction.
DiscussionOightyAcknowledge. This is valid. We had changed the queue implementation to be lessgas intensive on inserts, but it ended up making removals (i.e. settle) moreexpensive. A priority for us is supporting as many bids on settlement as we can(which allows smaller bid sizes). We're likely going to switch to a linked listimplementation to achieve this.sherlock-admin4The protocol team fixed this issue in the following PRs/commits:https://github.com/Axis-Fi/moonraker/pull/13710xhashThe protocol team fixed this issue in the following PRs/commits:Axis-Fi/moonraker#137Fixed The implementation is changed from heap to linked list to reduce the gascost and the max bid count for settlement is reduced to 2500 making the max gasexpenditure around 8million for settlementsherlock-admin4The Lead Senior Watson signed off on the fix.

78

https://github.com/Axis-Fi/moonraker/pull/137
https://github.com/Axis-Fi/moonraker/pull/137

Disclaimers
Sherlock does not provide guarantees nor warranties relating to the security of theproject.Usage of all smart contract software is at the respective users’ sole risk and is theusers’ responsibility.

79

