

Summary
 Audit Firm Guardian

 Prepared By Daniel Gelfand, Owen Thurm, Wafflemakr, Mark Jonathas,
 Osman Ozdemir, Kiki, Michael Lett

 Client Firm Axis

 Final Report Date August 21, 2024

Audit Summary

Axis engaged Guardian to review the security of its periphery contracts supporting auction creation

and settlement. From the 22nd of July to the 29th of July a team of 7 auditors reviewed the source

code in scope. All findings have been recorded in the following report.

Issues Detected Throughout the engagement 10 High/Critical issues were uncovered and promptly

remediated by the Axis team. Several issues impacted the fundamental behavior of the protocol,

following their remediation Guardian believes the protocol to uphold the functionality described for

the lending protocol product.

Security Recommendation Given the number of High and Critical issues detected, Guardian supports

an independent security review of the protocol at a finalized frozen commit. Furthermore, the Axis

team should increase testing with token donations which may present opportunities to DoS the

system.

For a detailed understanding of risk severity, source code vulnerability, and potential attack vectors,

refer to the complete audit report below.

🔗 Blockchain network: Arbitrum, Blast, Base

✅ Verify the authenticity of this report on Guardian’s GitHub: https://github.com/guardianaudits

📊 Code coverage & PoC test suite: https://github.com/GuardianAudits/axis-fuzzing
2

https://github.com/guardianaudits
https://github.com/GuardianAudits/axis-fuzzing

Table of Contents

Project Information

Project Overview ………………………………………….……………………………… 4

Audit Scope & Methodology .…………………………………………………………… 5
Smart Contract Risk Assessment

Invariants Assessed …………………………………………………………………... 6

Findings & Resolutions …………..…………………………….……………………… 11

Addendum

Disclaimer …………………………………………………………………..…………..… 42

About Guardian Audits ………………………………..………………………………… 43

3

Project Overview

Project Summary

Audit Summary

Vulnerability Summary

4

Project Name Axis

Language Solidity

Codebase https://github.com/Axis-Fi/axis-periphery

Commit(s) 9da756b9662ea0c5c125ab0c33f2f2d8c7b1c42f

Delivery Date August 21, 2024

Audit Methodology Static Analysis, Manual Review, Test Suite, Contract Fuzzing

Vulnerability Level Total Pending Declined Acknowledged Partially Resolved Resolved

 ● Critical 2 0 0 0 0 2

 ● High 8 0 0 0 1 7

 ● Medium 6 0 0 3 0 3

 ● Low 12 0 1 2 0 9

https://github.com/Axis-Fi/axis-periphery

5

Vulnerability Classifications

Methodology
The auditing process pays special attention to the following considerations:

● Testing the smart contracts against both common and uncommon attack vectors.
● Assessing the codebase to ensure compliance with current best practices and industry

standards.
● Ensuring contract logic meets the specifications and intentions of the client.
● Cross-referencing contract structure and implementation against similar smart contracts

produced by industry leaders.
● Thorough line-by-line manual review of the entire codebase by industry experts.
● Comprehensive written tests as a part of a code coverage testing suite.
● Contract fuzzing for increased attack resilience.

Audit Scope & Methodology

Vulnerability Level Classification

 ● Critical Easily exploitable by anyone, causing loss/manipulation of assets or data.

 ● High Arduously exploitable by a subset of addresses, causing loss/manipulation of assets or data.

 ● Medium Inherent risk of future exploits that may or may not impact the smart contract execution.

 ● Low Minor deviation from best practices.

 Invariants Assessed

6

During Guardian’s review of Axis, fuzz-testing with Echidna was performed on the protocol’s
main functionalities. Given the dynamic interactions and the potential for unforeseen edge
cases in the protocol, fuzz-testing was imperative to verify the integrity of several system
invariants.

Throughout the engagement the following invariants were assessed for a total of
10,000,000+ runs with a prepared Echidna fuzzing suite.

ID Description Tested Passed Remediation Run Count

AX-01 UniswapV2Dtl_onCreate() should set DTL
Config recipient ✅ ✅ ✅ 10M+

AX-02 UniswapV2Dtl_onCreate() should set DTL
Config lotCapacity ✅ ✅ ✅ 10M+

AX-03 UniswapV2Dtl_onCreate() should set DTL
Config lotCuratorPayout ✅ ✅ ✅ 10M+

AX-04 UniswapV2Dtl_onCreate() should set DTL
Config proceedsUtilisationPercent ✅ ✅ ✅ 10M+

AX-05 UniswapV2Dtl_onCreate() should set DTL
Config vestingStart ✅ ✅ ✅ 10M+

AX-06 UniswapV2Dtl_onCreate() should set DTL
Config vestingExpiry ✅ ✅ ✅ 10M+

AX-07 UniswapV2Dtl_onCreate() should set DTL
Config linearVestingModule ✅ ✅ ✅ 10M+

AX-08 UniswapV2Dtl_onCreate() should set DTL
Config active to true ✅ ✅ ✅ 10M+

AX-09 DTL Callbacks should not change seller base
token balance ✅ ✅ ✅ 10M+

https://github.com/crytic/echidna

Invariants Assessed

7

ID Description Tested Passed Remediation Run Count

AX-10 DTL Callbacks should not change dtl base
token balance ✅ ✅ ✅ 10M+

AX-11 DTL_onCancel() should set DTL Config
active to false ✅ ✅ ✅ 10M+

AX-12 DTL_onCurate should set DTL Config
lotCuratorPayout ✅ ✅ ✅ 10M+

AX-13 When calling DTL_onCurate auction house
base token balance should be equal to lot
Capacity of each lotId

✅ ✅ ✅ 10M+

AX-14 DTL_onSettle should should credit seller
the expected LP token balance ✅ ✅ ✅ 10M+

AX-15 DTL_onSettle should should credit
linearVestingModule the expected LP
token balance

✅ ✅ ✅ 10M+

AX-16 DTL_onSettle should should credit seller
the expected wrapped vesting token
balance

✅ ✅ ✅ 10M+

AX-17 After DTL_onSettle DTL Address quote
token balance should equal 0 ✅ ✅ ✅ 10M+

AX-18 After DTL_onSettle DTL Address base
token balance should equal 0 ✅ ✅ ✅ 10M+

AX-19 After UniswapV2DTL_onSettle DTL
Address quote token allowance for the
UniswapV2 Router should equal 0

✅ ✅ ✅ 10M+

AX-20 After UniswapV2DTL_onSettle DTL
Address base token allowance UniswapV2
Router should equal 0

✅ ✅ ✅ 10M+

Invariants Assessed

8

ID Description Tested Passed Remediation Run Count

AX-21 UniswapV3Dtl_onCreate() should set DTL
Config recipient ✅ ✅ ✅ 10M+

AX-22 UniswapV3Dtl_onCreate() should set DTL
Config lotCapacity ✅ ✅ ✅ 10M+

AX-23 UniswapV3Dtl_onCreate() should set DTL
Config lotCuratorPayout ✅ ✅ ✅ 10M+

AX-24 UniswapV3Dtl_onCreate() should set DTL
Config proceedsUtilisationPercent ✅ ✅ ✅ 10M+

AX-25 UniswapV3Dtl_onCreate() should set DTL
Config vestingStart ✅ ✅ ✅ 10M+

AX-26 UniswapV3Dtl_onCreate() should set DTL
Config vestingExpiry ✅ ✅ ✅ 10M+

AX-27 UniswapV3Dtl_onCreate() should set DTL
Config linearVestingModule ✅ ✅ ✅ 10M+

AX-28 UniswapV3Dtl_onCreate() should set DTL
Config active to true ✅ ✅ ✅ 10M+

AX-29 On UniswapV3DTL_OnSettle() calculated
sqrt price should equal pool sqrt price ✅ ✅ ✅ 10M+

AX-30 After UniswapV3DTL_onSettle DTL
Address base token allowance for the
GUniPool should equal 0

✅ ✅ ✅ 10M+

AX-31 After UniswapV3DTL_onSettle DTL
Address base token allowance for the
GUniPool should equal 0

✅ ✅ ✅ 10M+

Invariants Assessed

9

ID Description Tested Passed Remediation Run Count

AX-32 When calling BaselineDTL_createLot
auction house base token balance should
be equal to lot Capacity lotId

✅ ✅ ✅ 10M+

AX-33 After DTL_onSettle quote token balance of
quote token should equal 0 ✅ ✅ ✅ 10M+

AX-34 BaselineDTL_onSettle should credit
baseline pool with correct quote token
proceeds

✅ ✅ ✅ 10M+

AX-35 BaselineDTL_onSettle should credit seller
quote token proceeds ✅ ✅ ✅ 10M+

AX-36 Baseline token total supply after _onCancel
should equal 0 ✅ ✅ ✅ 10M+

AX-37 BaselineDTL_onCancel should mark
auction completed ✅ ✅ ✅ 10M+

AX-38 When calling BaselineDTL_onCancel DTL
base token balance should equal 0 ✅ ✅ ✅ 10M+

AX-39 When calling BaselineDTL_onCancel
baseline contract base token balance
should equal 0

✅ ✅ ✅ 10M+

AX-40 BaselineDTL_onCurate should credit
auction house correct base token fees ✅ ✅ ✅ 10M+

AX-41 After BaselineDTL_onSettle baseline token
base token balance should equal 0 ✅ ✅ ✅ 10M+

AX-42 After BaselineDTL_onSettle baseline pool
base token balance should equal baseline
pool supply

✅ ✅ ✅ 10M+

Invariants Assessed

10

ID Description Tested Passed Remediation Run Count

AX-43 After BaselineDTL_onSettle seller baseline
token balance should equal 0 ✅ ✅ ✅ 10M+

AX-44 circulating supply should equal lot capacity
plus curatorFee minus refund ✅ ✅ ✅ 10M+

AX-45 BaselineDTL_onSettle should mark auction
complete ✅ ✅ ✅ 10M+

AX-46 After BaselineDTL_onSettle floor reserves
should equal floor proceeds ✅ ✅ ✅ 10M+

AX-47 After BaselineDTL_onSettle anchor
reserves should equal pool proceeds - floor
proceeds

✅ ✅ ✅ 10M+

AX-48 After BaselineDTL_onSettle discovery
reserves should equal 0 ✅ ✅ ✅ 10M+

AX-49 After BaselineDTL_onSettle floor bAssets
should equal 0 ✅ ✅ ✅ 10M+

AX-50 After BaselineDTL_onSettle anchor
bAssets should be greater than 0 ✅ ✅ ✅ 10M+

AX-51 After BaselineDTL_onSettle discovery
bAssets should be greater than 0 ✅ ✅ ✅ 10M+

AX-52 UniswapV2DTL_onSettle should not fail
with 'UniswapV2Library:
INSUFFICIENT_LIQUIDITY'

✅ ❌ ✅ 10M+

AX-53 Profit should not be extractable due to
UniswapV3Pool price manipulation ✅ ❌ N/A 10M+

Findings & Resolutions

11

ID Title Category Severity Status

C-01 Gaming Uni V3 Initialization DoS ● Critical Resolved

C-02 Uniswap V2 Auction Settlement
DoS Logical Error ● Critical Resolved

H-01 Curator Fees Will DoS Auction
Settlement Logical Error ● High Resolved

H-02 Pool Percentage Causes DoS DoS ● High Resolved

H-03 Baseline Settlement DoS Via
External Liquidity DoS ● High Resolved

H-04 bAsset Price Set Below Floor Gaming ● High Partially Resolved

H-05 Malicious Sellers Can Steal
Auction Proceeds Gaming ● High Resolved

H-06 Anchor Width Param Will DoS
Auction Settlement DoS ● High Resolved

H-07 Lot Creation DoS Through
Uniswap Pair DoS ● High Resolved

H-08 Baseline Launches Can Not Be
Done DoS ● High Resolved

M-01 discoveryTickWidth Configured
Too Low Logical Error ● Medium Resolved

M-02 Inconsistent Prices Between
Pool and Auction Validation ● Medium Resolved

M-03 Incorrect Liquidity Structure
Deployed Logical Error ● Medium Resolved

Findings & Resolutions

12

ID Title Category Severity Status

M-04 Auction Settlement DoS’d By
Creator DoS ● Medium Acknowledged

M-05 Blacklisted Addresses Halt
Auction Settlement DoS ● Medium Acknowledged

M-06 Outdated Vesting Modules Used Logical Error ● Medium Acknowledged

L-01 console.log Present in Code Best Practices ● Low Declined

L-02 slide Inoperable Due To Floor
Config Validation ● Low Resolved

L-03 Early Unvesting Is Possible Logical Error ● Low Resolved

L-04 Unused active Flag Validation ● Low Resolved

L-05 Discovery Range Loose
Validations Validation ● Low Acknowledged

L-06 Unused Error Best Practices ● Low Resolved

L-07 High floorReservesPercent
Causes DoS Validation ● Low Resolved

L-08 Arbitrary Byte Length Risk Warning ● Low Resolved

L-09 Esoteric Token Pairs Are Not
Supported Warning ● Low Acknowledged

L-10 Launches Restrict Liquidity
Structure Validation ● Low Resolved

Findings & Resolutions

13

ID Title Category Severity Status

L-11 Misleading Comment Best Practices ● Low Resolved

L-12 Seller May Receive All Proceeds Logical Error ● Low Resolved

C-01 | Gaming Uni V3 Initialization

Description

Through initializing the Uniswap V3 pool, a malicious user can manipulate the price of the tokens
from an auction and sell their newly purchased tokens for a profit. This attack is possible because
any person can call settle() and set the maxSlippage to an unreasonably high number. In order to
execute this attack, a malicious user would need to:

1. Buy tokens in an auction.
2. Initialize a Uniswap V3 Pool with a high price.
3. Call settle() with maxSlippage set to 100e2.
4. Sell their tokens in the Uniswap V3 Pool.

It is also worth noting that if settle() is first called by the seller with a reasonable slippage tolerance,
the transaction will revert, and the attacker will be able to follow up and execute the transaction with
the proper slippage.

Recommendation

There are two possible solutions for this issue. The first is to make settle() only callable by the seller,
so that they can specify the slippage tolerance. Then wrap the callback in a try/catch block. Inside
the catch, transfer the tokens back to the seller if the transaction reverts.

Alternatively if you do not wish to make changes to the core system, add minSlippageAmtOutToken0
and minSlippageAmtOutToken1 to DTLConfiguration. This way the owner can be certain that
slippage is not set to an intolerable amount, regardless of who calls settle().

Resolution

Axis Team: The issue was resolved in commit 04e73e9.
14

Category Severity Location Status

DoS ● Critical UniswapV3DTL.sol: 193, 205 Resolved

PoC

https://github.com/Axis-Fi/axis-periphery/pull/11/commits/04e73e93181019261cd0c8d0f425b4f526fcc860
https://github.com/GuardianAudits/axis-1/blob/Gameing_V3_Init/test/guardian/PoCs/GuradianPoCGameV3.t.sol

C-02 | Uniswap V2 Auction Settlement DoS

Description

When a UniV2 pool is used as apart of the token launch the settle function will attempt to add
liquidity to the pair. However this will only be successful if the pool has either a non-zero balance of
both assets or a zero balance of both assets.

If the pair has a non-zero reserve for one asset and a zero reserve for the other it will revert when
attempting to add liquidity. This is due to the following check when the addLiquidity function calls
the quote function: require(reserveA > 0 && reserveB > 0, 'UniswapV2Library:
INSUFFICIENT_LIQUIDITY');

Typically it is not possible to get a pair into this state as the first time adding liquidity to a pair, both
assets must be added. However an attacker can bypass this by donating a dust amount of one of
the assets to the pair and then calling sync. By doing this the reserves of that pair will update and to
having one reserve being zero and the other being non-zero. Thus causing the revert when the
auction tries to settle.

All an attacker would need to do in this case is monitor Axis auction creations, create the pair ahead
of time and donate 1 wei of the quote token. By doing this the auction will not be able to settle.

Recommendation

Calculate the amount to be minted to the pair and call the mint function instead of addLiquidity to
avoid this DOS case.

Resolution

Axis Team: The issue was resolved in PR#13.
15

Category Severity Location Status

Logical Error ● Critical UniswapV2DTL.sol: 119 Resolved

PoC

https://github.com/Axis-Fi/axis-periphery/pull/13
https://gist.github.com/devNamedKiki/6d3c4b07bde8413be6f2ccd418662d6c

H-01 | Curator Fees Will DoS Auction Settlement

Description

Auction seller can opt to set a curator in charge of approving a batch auction lot. This curator will
receive some base tokens. The issue relies on Baseline auctions, as curator fees were not expected
to be enabled, but fees in bAssets are actually minted during the onCurate callback, as this
permission flag is enabled in the callback contract.

This additional bAssets minted will cause the onSettle callback to revert, as curator fees increases
the bAsset spot supply, breaking the capacity invariant (capacity ratio < 100%) and causing a DoS on
auction settlement

Recommendation

If curator fees are enabled for Baseline Auctions, consider accounting for these fees during onSettle
callback. Otherwise, revert during the onCurate callback.

Resolution

Axis Team: The issue was resolved in commit 47a44a0.

16

Category Severity Location Status

Logical Error ● High BaselineAxisLaunch.sol: 456 Resolved

PoC

https://github.com/Axis-Fi/axis-periphery/pull/11/commits/47a44a0540ab17153473744f789a02d77dabc742
https://github.com/GuardianAudits/axis-1/blob/guardian/test/guardian/tests/GuardianTestBaseline.t.sol#L974

H-02 | Pool Percentage Causes DoS

Description

For Baseline, allowing a user to set the poolPercent, can cause a revert in _onSettle(). If the
poolPercent is not configured to 100%, the revert will occur due to the capacityRatio not being within
a tolerable range.

The capacityRatio is not satisfied because there is not enough backing liquidity to support the
Baseline system. Since the revert is not caught in _onCreate(), an auction will be carried out, but then
it will become unsettleable.

Recommendation

Do not allow the user to configure poolPercent, it should be set to 100%.

Resolution

Axis Team: The issue was resolved in commit 47a44a0.

17

Category Severity Location Status

DoS ● High BaselineAxisLaunch: 313 Resolved

PoC

https://github.com/Axis-Fi/axis-periphery/pull/11/commits/47a44a0540ab17153473744f789a02d77dabc742
https://github.com/GuardianAudits/axis-1/blob/guardian/test/guardian/tests/GuardianTestBaseline.t.sol#L1040

H-03 | Baseline Settlement DoS Via External Liquidity

Description

Reserves added as liquidity during Baseline token launches must have enough capacity to buy back
all circulating bAssets at the floor price. This verification is conducted in the _onSettle function, and
the total capacity must fall within the range of 100% to 102%.

The calculation of capacity involves the total liquidity amounts of the BPOOL contract in floor,
anchor, and discovery ranges. However, anyone can add liquidity on behalf of the BPOOL before
settlement, increasing the total capacity beyond 102% and causing the _onSettle callback to fail.

Recommendation

It is suggested to verify the LP token balance of the BPOOL before adding reserves/liquidity to the
underlying pool and burn these tokens. Alternatively, consider allowing any capacity ratio above
100% without restricting it to 102%.

Resolution

Axis Team: The issue was resolved in commit 3e4061c.

18

Category Severity Location Status

DoS ● High BaselineAxisLaunch.sol: 592 Resolved

PoC

https://github.com/Axis-Fi/axis-periphery/pull/11/commits/3e4061c7d1fd6f027f5b8ecb95e5e0398785e3dd
https://github.com/GuardianAudits/axis-2/pull/3

H-04 | bAsset Price Set Below Floor

Description

The Uniswap pool is set up and initialized with the BPOOL contract before the auction begins.
The pool will initially have 0 liquidity, as a result, a malicious actor may trigger a swap with 0 bAsset
input amount and a price limit to set the price where they wish. The pool price can then be assigned
to below the floor tick, perturbing the launch of the system.

Recommendation

Consider implementing logic in the _onSettle callback to re-adjust the price back to the upper tick of
the anchor range by swapping with 1 wei reserves in with a priceLimit at the desired price to assign
the price to the bottom of the upper tick range of the Anchor.

Resolution

Axis Team: The issue was resolved in commit d37f1b2.

Guardian Team: If a malicious actor initializes a large tick for a Uniswap V3 launch, they can then add
single sided liquidity to the pool to perform a DoS. The single sided liquidity, provided in the quote
token, will prevent the swap in _createAndInitializePoolIfNecessary() from reaching the target price
for the pool.

This will lead to a Callback_Slippage revert in _mintAndDeposit(), and will prevent an auction from
being settled. Ultimately, an attacker can still DoS both Baseline and Uni V3 launches with enough
assets, though this action will be costly and not profitable.

19

Category Severity Location Status

Gaming ● High Global Partially Resolved

PoC

https://github.com/Axis-Fi/axis-periphery/pull/11/commits/d37f1b29607ee455334d1b60775154bf795a460a
https://github.com/GuardianAudits/axis-1/pull/4

H-05 | Malicious Sellers Can Steal Auction Proceeds

Description

Uniswap V2 onCreate callback requires that the pair does not exist, but the onSettle callback will not
revert if someone creates it before the auction settlement. Therefore, a malicious auction seller can
create the pair just before the auction ends, adds liquidity in a proportion that results in a higher pool
price, settle the auction and steal most of the quote tokens from the proceeds as a refund.

Recommendation

Consider creating the UniswapV2 pair during auction settlement.
Alternatively, make sure the AuctionHouse receives both the capacity and the tokens required for
liquidity up front. Be advice that some sellers will be deterred as they may need these tokens in their
protocol treasury.

Resolution

Axis Team: The issue was resolved in PR#13.

.

20

Category Severity Location Status

Gaming ● High UniswapV2DTL.sol: 119 Resolved

PoC

https://github.com/Axis-Fi/axis-periphery/pull/13
https://github.com/GuardianAudits/axis-1/blob/guardian/test/guardian/tests/GuardianTestBaseline.t.sol#L1083

H-06 | Anchor Width Param Will DoS Auction Settlement

Description

Auction seller can set some initial params for the Baseline callback, like the anchorTickWidth. The
onCreate function requires this value to be between 0 and 10.
However, setting a high anchor width increases the ANCHOR capacity, increasing the capacityRatio,
DoS'ing the auctions settlement.

Recommendation

Instead of having a fixed anchor width, follow the same pattern as the BaselineInit policy, passing the
desired floorTickL and calculating the anchorTickL with:
int24 anchorTickL = max(activeTS - (ANCHOR_WIDTH * T_S), _floorTickL + T_S);.

Resolution

Axis Team: The issue was resolved in commit 47a44a0.

21

Category Severity Location Status

DoS ● High BaselineAxisLaunch.sol: 367 Resolved

https://github.com/Axis-Fi/axis-periphery/pull/11/commits/47a44a0540ab17153473744f789a02d77dabc742

H-07 | Lot Creation DoS Through Uniswap Pair

Description

Upon creating a lot which uses a DTL callback, the onCreate callback is invoked. For the
UniswapV2DTL and UniswapV3DTL callbacks, the __onCreate function validates that the pair for the
baseToken and quoteToken combination does not already exist.

However a malicious actor may observe the transaction to create a lot and frontrun this transaction
to create a Uniswap V2 or V3 pair with the same baseToken and quoteToken. Notice that this action
does not require owning either of the tokens in the pair. As a result the onCreate callback will revert,
causing the lot creation to revert.

Recommendation

Remove the pair existence validation in the __onCreate function in the both the UniswapV2DTL and
UniswapV3DTL files as it is unnecessary and introduces a DoS vector.

Resolution

Axis Team: The issue was resolved in commit d9a0fc1.

.

22

Category Severity Location Status

DoS ● High UniswapV2DTL.sol: 83,
UniswapV3DTL.sol: 110

Resolved

https://github.com/Axis-Fi/axis-periphery/pull/11/commits/d9a0fc10036b83f0aa515887795b9e6c7189f87a

H-08 | Baseline Launches Can Not Be Done

Description

When the BPOOL contract is deployed, token transfers are locked and must be unlocked via policy
contracts. In the underlying Baseline protocol, the BaselineInit policy unlocks transfers after launch.
The BaselineAxisLaunch contract serves as the BaselineInit policy. However, it does not have
permission to call the setTransferLock function.

An auction with BPOOL tokens can be created since this action only requires minting and does not
require a base token transfer. However, other actions such as cancelling an auction, settling an
auction, or using base tokens for swaps are not possible due to transfers being locked.

Recommendation

Include the setTransferLock.selector in the requestPermissions function when configuring the policy,
and unlock transfers after an auction is created.

Resolution

Axis Team: The issue was resolved in commit 301bbb2.

23

Category Severity Location Status

DoS ● High BaselineAxisLaunch.sol Resolved

https://github.com/0xBaseline/baseline-v2/blob/60bed78b7bee28016321ddd8c590df6c61bae6e9/src/modules/BPOOL.v1.sol#L65
https://github.com/0xBaseline/baseline-v2/blob/60bed78b7bee28016321ddd8c590df6c61bae6e9/src/policies/BaselineInit.sol#L219
https://github.com/Axis-Fi/axis-periphery/pull/11/commits/301bbb2d2fb1654c0722818abff368014510463d

M-01 | discoveryTickWidth Configured Too Low

Description
Baseline sets DISCOVERY_WIDTH to 350 in MarketMaking.sol, however _onCreate() only validates
that it is set to at least one. Setting it to 350 will ensure that there is enough liquidity spread out
through a range that will not cause the price of the base token to increase in an unprecedented
manner.

Having a larger discovery range will also mint more bAssets, making it harder to break through the
discovery range without affecting the capacity ratio check. The protocol allows for anchor range
widths between 1 and 10, as well as discovery range widths above 0. However, in the underlying
Baseline protocol, anchor and discovery range widths are fixed values of 10 and 350, respectively.

When the sweep or slide functions in the MarketMaking contract are called, liquidity structure will be
rebalanced based on these constant values from Baseline, regardless of the initial configuration.
Additionally, reserves will be moved from the floor range to the anchor range during sweep in this
case, which is an unwanted situation in Baseline. This happens because sweep function adds
liquidity to anchor first, and then adds reserves to floor.

However, the same amount of liquidity for a much wider anchor range will require more reserves,
causing floor reserves to decrease. Also, it is crucial for the discovery range to be wide enough and
filled with BPOOL tokens in order to provide sufficient liquidity for swaps and ensure healthy price
movements. A narrow discovery range could result in a single swap moving the current price tick
well above the upper discovery tick, where there is minimal liquidity.

Other differences compared to Baseline are floorReservesPercent value being configurable (which
affects liquidity thickness), and lack of gap between floor and anchor ranges. In baseline, floor has
the thickest liquidity and anchor liquidity is much lower compared to floor.

Recommendation
Set the discovery range to 350 tick spacings. Consider using the Baseline range widths instead of
allowing them to be configured by the seller. Also make sure that floor range has much more
reserves compared to anchor.

Resolution
Axis Team: The issue was resolved in commit 8e1481c.

24

Category Severity Location Status

Logical Error ● Medium BaselineAxisLaunch: 303 Resolved

PoC

https://github.com/0xBaseline/baseline-v2/blob/60bed78b7bee28016321ddd8c590df6c61bae6e9/src/policies/MarketMaking.sol#L67C1-L69C44
https://github.com/Axis-Fi/axis-periphery/pull/11/commits/8e1481cb85af277616b71934377df6106b205e99
https://github.com/GuardianAudits/axis-1/blob/guardian/test/guardian/tests/GuardianTestBaseline.t.sol#L1170

M-02 | Inconsistent Prices Between Pool and Auction

Description

The seller of the bAsset determines the open price for the Uniswap V3 Pool when creating the BPool.
This is done by passing _initialActiveTick in the constructor. Fixed-Priced Auctions are intended to
sell the asset at an opening price, but there is no validation that the Auction price matches the
Uniswap V3 Pool price. Since no validation occurs, a malicious seller can perform two different
dishonest actions:

1. Set the price of the bAsset to a lower price than the Auction. This will cause any users who bought
tokens in an auction to immediately incur an unrealized loss. Additionally, the seller can purchase
tokens at a discount.

2. Set the price of the bAsset to a higher price than the Auction. In this scenario, a seller can set
themself as the curator, and sell the curator reward. This action can also push the Uniswap V3 Pool
price back to the Fixed-Priced Auction price.

Recommendation

Verify that the price being initialized is the same price that is being used for Fixed-Price Auction.

Resolution

Axis Team: The issue was resolved in commit 8b5be94.

25

Category Severity Location Status

Validation ● Medium Lack Of Present Code Resolved

https://github.com/Axis-Fi/axis-periphery/pull/11/commits/8b5be94680ee01a8be49058062f7ec68004d5413

M-03 | Incorrect Liquidity Structure Deployed

Description

Baseline auction settlement will revert if the capacityRatio is not between 100% and 102%. This
makes sure that the total capacity on the system is greater than the spot supply of bAssets.
However, the 102% check is specific for 1% fee tier pools. If the Baseline auction is used for a lower
fee tier, the liquidity structure deployed might be invalid, but the onSettle callback might not revert.

This issue allows MarketMaking.bump() to be executed just after the liquidity is deployed, granting
arbitrageurs an opportunity to extract quote tokens from the positions.

Recommendation

Consider calling MarketMaking.bump just after the capacity ratio check, inside a try/catch, and
revert if the bump succeeds. Refer to:
https://github.com/0xBaseline/baseline-v2/blob/main/test/TestFoundation.sol#L276

Resolution

Axis Team: Restricted to 1% fee tier / 200 tick spacing.

26

Category Severity Location Status

Logical Error ● Medium BaselineAxisLaunch.sol: 592 Resolved

PoC

https://github.com/0xBaseline/baseline-v2/blob/main/test/TestFoundation.sol#L276
https://github.com/GuardianAudits/axis-1/blob/guardian/test/guardian/tests/GuardianTestBaseline.t.sol#L871

M-04 | Auction Settlement DoS’d By Creator

Description

In the BaseDTL callback contract the onSettle callback assumes that the auction creator has the
necessary balance of base tokens and has set the correct approval to the callback. However a
malicious auction creator may neglect to approve the callback contract to transfer the base tokens,
therefore DoSing the settlement of the auction and preventing users from claiming their bids.

This results in user’s funds being held captive during the auction period until the auction can be
aborted.

Recommendation

Consider requiring that the Axis core system or the callback contract is pre-funded with the base
tokens which will be used to create the initial liquidity during settlement.

Resolution

Axis Team: Acknowledged.

27

Category Severity Location Status

DoS ● Medium BaseDTL.sol: 287 Acknowledged

M-05 | Blacklisted Addresses Halt Auction Settlement

Description

In the onSettle callback any remaining quote tokens in the contract which weren’t used up due to the
proceedsUtilisationPercent or imbalance when providing liquidity are sent back to the auction seller.
However since the seller never has to directly handle the quote tokens from the auction, it is possible
that the seller is blacklisted for the quote token.

Thus the onSettle callback will always revert when there are leftover quote tokens that would be
transferred to the seller. A malicious owner of a blacklisted address could leverage this to create an
auction that can never be settled using a Uniswap callback. This would lock the funds of bidders and
effectively create an auction which becomes a honey pot.

Recommendation

Consider leaving extra tokens in the callback contract and tracked in a mapping to be pulled by the
seller address after settlement in a separate transaction.

Otherwise consider donating the additional quote tokens to a protocol address in the event that they
cannot be transferred due to a blacklisted seller, thus allowing the onSettle callback to complete,
similar to how GMX does this here:
https://github.com/gmx-io/gmx-synthetics/blob/1938e365dc009342aa288aa6b42fc1fd3cd9e45d/c
ontracts/token/TokenUtils.sol#L80

Resolution

Axis Team: We acknowledge this, but don’t plan to fix it. This is possible in general on Axis without a
DTL callback since the seller would be sent the funds directly by the AH.

28

Category Severity Location Status

DoS ● Medium BaseDTL.sol: 368 Acknowledged

https://github.com/gmx-io/gmx-synthetics/blob/1938e365dc009342aa288aa6b42fc1fd3cd9e45d/contracts/token/TokenUtils.sol#L80
https://github.com/gmx-io/gmx-synthetics/blob/1938e365dc009342aa288aa6b42fc1fd3cd9e45d/contracts/token/TokenUtils.sol#L80

M-06 | Outdated Vesting Modules Used

Description

In the _onSettle function, if configured, a vest is created for the LP tokens created from the callback.
The linearVestingModule is ensured to be the latest vesting module in the _onCreate callback when
the lotConfiguration is set, however by the time the lot is settled the latestVersion or isSunset values
are not checked.

Therefore it is possible that a lot is settled with a linearVestingModule that is not the latest version or
is sunsetted. In the event that a vulnerability is identified in the linearVestingModule the protocol will
not be able to wait for the current vests to end and be settled to update the module.

Recommendation

Fetch the latest linearVestingModule with the _getLatestLinearVestingModule when settling the lot.

Resolution

Axis Team: This follows the pattern we use with auctions for both auction and derivative modules.
The reason is that we want to give sellers confidence that the contracts that are used for their
auction are immutable. There is a tradeoff here between patching bugs and being “unruggable”, and
we’ve leaned towards the latter.

29

Category Severity Location Status

Logical Error ● Medium BaseDTL.sol: 351 Acknowledged

L-01 | console.log Present in Code

Description

It is inadvisable to deploy code to a live blockchain with console.logs present. This will waste users’
gas, with no benefit added.

Recommendation

Remove all occurrences of console.log.

Resolution

Axis Team: Will do. Several of the statements are still there from testing right before the audit.

30

Category Severity Location Status

Best Practices ● Low BaselineAxisLaunch: 578-581, 591 Declined

L-02 | slide Inoperable Due To Floor Config

Description

When verifying the floorReservesPercent, the validation only checks if the value is less than or equal
to 99%. This can allow a user to deploy a pool with 0% of tokens allocated to the floor. This means
that even if all bAsset holders were to sell their tokens, the floor could never be reached. This will
prevent the baseline market making feature slide() from being operable.

Consider the following scenario:
FLOOR 200 - 400
ANCHOR 400-600
DISCOVERY 600 - 5000
ACTIVE TICK = 500
SLIDE TICK = 500 - 200 = 300
Since 300 resides in the floor, slide() will not be callable.

Recommendation

Require the floorReservesPercent to be set to at least 50%.

Resolution

Axis Team: The issue was resolved in commit da9cf83.

31

Category Severity Location Status

Validation ● Low BaselineAxisLaunch: 308 Resolved

https://github.com/Axis-Fi/axis-periphery/pull/11/commits/da9cf83e45f72a9999cfb308235589ee1190b3ea

L-03 | Early Unvesting Is Possible

Description

Auction sellers might need to vest their LP tokens after an auction has settled. Start time and expiry
time of a vesting are provided by the seller. The protocol allows vesting start time to be before
block.timestamp to prevent a DoS by delaying the settlements. However, this allows sellers to unvest
most of their LP tokens immediately after auction.

Normal scenario (start is current timestamp):
• start: block.timestamp
• expiry: block.timestamp + 1 year
• LP amount: 100
In this 1 year vesting scenario, seller can unvest 25 tokens after 3 months.

Alternative scenario (seller sets vesting start 9 years ago):
• start: block.timestamp - 9 years
• expiry: block.timestamp + 1 year
• LP amount: 100
Here, seller can unvest 90 tokens right after settlement without waiting any time.

Recommendation

One option might be storing the total vesting period, and updating expiry based on this period after
minting derivative tokens during settlement. Another option to consider is determining a maximum
time that can be before block.timestamp. It would still allow malicious seller to perform this but can
decrease the impact.

Resolution

Axis Team: The issue was resolved in commit 8eeb8d6.
32

Category Severity Location Status

Logical Error ● Low Global Resolved

https://github.com/Axis-Fi/axis-periphery/pull/11/commits/8eeb8d6abac27db5064d4edc9327e4a073dd9165

L-04 | Unused active Flag

Description

In the _onCancel callback implementation the active flag is set to false for the lotConfiguration,
however the active flag is not used to validate whether a lot is active anywhere.

Recommendation

Although there are mechanisms in place to prevent the onSettle and onCurate functions being called
for a cancelled lot, consider implementing additional safeguards on the BaseDTL callback side to
prevent these callbacks from being called for cancelled lots.

Resolution

Axis Team: The issue was resolved in commit 81e08e5.

33

Category Severity Location Status

Validation ● Low BaseDTL.sol: 224 Resolved

https://github.com/Axis-Fi/axis-periphery/pull/11/commits/81e08e5d7c329d2340d4f38ab5414f9d68f1a4b6

L-05 | Discovery Range Loose Validations

Description

In the onCreate callback the discoveryRangeUpper is validated to be within the MAX_TICK, however
if the discoveryRangeUpper is assigned such that it is even close to the MAX_TICK this can lead to a
DoS of the Baseline liquidity operations down the road.

For example:
TickSpacing: 20
Discovery ticks: [MaxTick - 200, MaxTick]
A sweep cannot be triggered in this case as it would cause the discovery upper tick to exceed the
max tick.

Although it is unlikely that a configuration is made where the discoveryUpperTick is close to the
MAX_TICK, such a configuration should not be allowed.

Recommendation

Consider restricting the validation on the discoveryMaxTick further to an expected range.

Resolution

Axis Team: The issue was resolved in PR#11.

34

Category Severity Location Status

Validation ● Low BaselineAxisLaunch.sol: 383 Acknowledged

https://github.com/Axis-Fi/axis-periphery/pull/11

L-06 | Unused Error

Description

Callback_Params_PoolTickMismatch error is defined but never used.

Recommendation

Remove unused errors.

Resolution

Axis Team: The issue was resolved in commit b257373.

35

Category Severity Location Status

Best Practices ● Low BaselineAxisLaunch.sol: 49 Resolved

https://github.com/Axis-Fi/axis-periphery/pull/11/commits/b25737309223ed464688046c7a0cf7bfb0555eab

L-07 | High floorReservesPercent Causes DoS

Description

In the onCreate callback the floorReservesPercent is validated to be no more than 99%, however this
loose validation allows users to create a liquidity structure where the majority of the liquidity is
allocated to the Floor position.

As a result a malicious actor is able to buy through all of the Anchor and Discovery range liquidity as
it can be very thin. The malicious actor can then set an LP outside of the discovery range in order to
assign the price outside of the liquidity structure.
Once the active price is allowed to exceed the Discovery range liquidity operations will be DoS’d as a
sweep cannot occur.
https://github.com/0xBaseline/baseline-v2/blob/60bed78b7bee28016321ddd8c590df6c61bae6e9/
src/policies/MarketMaking.sol#L217

Recommendation

Consider making the floorReservesPercent more strict such that it is unlikely that a liquidity structure
can be deployed where a malicious actor can easily buy through all of the available liquidity to DoS
the system.

Resolution

Axis Team: The issue was resolved in commit 47e9cd5.

36

Category Severity Location Status

Validation ● Low BaselineAxisLaunch.sol: 308 Resolved

PoC

https://github.com/0xBaseline/baseline-v2/blob/60bed78b7bee28016321ddd8c590df6c61bae6e9/src/policies/MarketMaking.sol#L217
https://github.com/0xBaseline/baseline-v2/blob/60bed78b7bee28016321ddd8c590df6c61bae6e9/src/policies/MarketMaking.sol#L217
https://github.com/Axis-Fi/axis-periphery/pull/11/commits/47e9cd58071bbc4d87b470e15742a9f105b95377
https://github.com/GuardianAudits/axis-1/pull/5/files

L-08 | Arbitrary Byte Length Risk

Description

params.implParams bytes are saved into storage within _onCreate, and operations may appear fine
from the perspective of the user. During settlement callback when mintAndDeposit is executed, the
implParams are loaded into memory:

 (uint24 poolFee) = abi.decode(lotConfiguration[lotId].implParams, (uint24));

The first 24 bits can be decoded properly into a uint24, but there is no guarantee that the bytes do
not have arbitrary padding afterwards that inflate the payload. Consequently, there will be extremely
large gas costs associated with the load into memory upon settlement. It's important to note that
there isn't a large risk since the callbacks do not have a predetermined max gas limit, but noteworthy
for future-proofing operations.

Recommendation

Consider documenting this or placing a cap on the length of the bytes.

Resolution

Axis Team: The issue was resolved in commit 04e73e9.

37

Category Severity Location Status

Warning ● Low UniswapV3DTL.sol Resolved

https://github.com/Axis-Fi/axis-periphery/pull/11/commits/04e73e93181019261cd0c8d0f425b4f526fcc860

L-09 | Esoteric Token Pairs Are Not Supported

Description

The getSqrtPriceX96 function used for the UniswapV3DTL callback computes the ratioX192 and
stores it as a uint256 before taking the square root to compute the sqrtPriceX96Temp.
As a result with some esoteric token pairs which have a large difference in amounts, the
intermediate ratioX192 value can overflow the uint256 size.

For example uint160 price = SqrtPriceMath.getSqrtPriceX96(address(_baseToken),
_BASELINE_QUOTE_TOKEN, 1e6, 1e26); causes such an overflow.

Such a combination of tokens may arise when one token has low precision, such as USDC and
another one has high precision such as YAMv2 or a very low price.

Recommendation

Be wary of this when supporting tokens and token prices in auctions. It is unlikely that supported
token pairs would cause this issue. However it may be worth adding validations to disallow auctions
which would cause this logic to revert based on token decimals and prices.

Resolution

Axis Team: In general, Axis supports tokens with between 6 and 18 decimals. However, given the
price set can cause the difference to be larger, we acknowledge this could happen, but the likelihood
is low.

38

Category Severity Location Status

Warning ● Low SqrtPriceMath.sol: 34 Acknowledged

L-10 | Launches Restrict Liquidity Structure

Description

In the _onCreate callback the validation correctly requires that the anchor range cannot exceed a
width of 10 tick spacings, however the floor range upper tick is always assigned to the lower tick of
the anchor range.

Therefore there can be no liquidity structures with a gap in between the upper floor tick and the lower
anchor tick as will commonly be the case where there is a significant premium to the baseline value.
As a result the initial liquidity structure configuration is limited in that the active price (upper tick
range of the anchor position) cannot be more than 10 ticks above the floor position.

Recommendation

Consider allowing a separate configuration variable for the upper floor tick, where the liquidity
structure can have a gap between the floor and the lower anchor range. Be sure to maintain the
existing Anchor width validation and add relevant validation such that the anchor cannot collide with
the floor and the anchor and floor are within a reasonable distance from each other.

Additionally, if the Anchor range is within 10 tick spacings of the floor range there should be no gap
between the two positions.

Resolution

Axis Team: The issue was resolved in commit 9839ce1.

39

Category Severity Location Status

Validation ● Low BaselineAxisLaunch.sol Resolved

https://github.com/Axis-Fi/axis-periphery/pull/11/commits/9839ce1b41dabec2d6bc90a73992fbf1234391ac

L-11 | Misleading Comment

Description

"Send the LP tokens to the seller" comment in L359 of the BaseDTL contract is misleading since LP
tokens are transferred to the recipient not to the seller.

Recommendation

Consider updating the comment.

Resolution

Axis Team: Resolved.

40

Category Severity Location Status

Best Practices ● Low BaseDTL.sol: 359 Resolved

L-12 | Seller May Receive All Proceeds

Description

Both Uniswap and Baseline auction callbacks allow the owner to set a percentage of the proceeds
when adding liquidity during auction settlement. The issue relies on the validation for this
percentage. Baseline auction requires this value to be within 1% and 100%, while Uniswap requires
0% to 100%.

This allows auction sellers to set a very small value, and receive most of the proceeds which were
meant to be added as liquidity.

Recommendation

Consider increasing the lower limit for the proceeds used for liquidity providing.

Resolution

Axis Team: Resolved.

41

Category Severity Location Status

Logical Error ● Low Global Resolved

Disclaimer

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular
project or team. This report is not, nor should be considered, an indication of the economics or value
of any “product” or “asset” created by any team or project that contracts Guardian to perform a
security assessment. This report does not provide any warranty or guarantee regarding the absolute
bug-free nature of the technology analyzed, nor do they provide any indication of the technologies
proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with
any particular project. This report in no way provides investment advice, nor should be leveraged as
investment advice of any sort. This report represents an extensive assessing process intending to
help our customers increase the quality of their code while reducing the high level of risk presented
by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. Guardian’s
position is that each company and individual are responsible for their own due diligence and
continuous security. Guardian’s goal is to help reduce the attack vectors and the high level of
variance associated with utilizing new and consistently changing technologies, and in no way claims
any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by Guardian is subject to dependencies and under continuing
development. You agree that your access and/or use, including but not limited to any services,
reports, and materials, will be at your sole risk on an as-is, where-is, and as-available basis.
Cryptographic tokens are emergent technologies and carry with them high levels of technical risk
and uncertainty. The assessment reports could include false positives, false negatives, and other
unpredictable results. The services may access, and depend upon, multiple layers of third-parties.

Notice that smart contracts deployed on the blockchain are not resistant from internal/external
exploit. Notice that active smart contract owner privileges constitute an elevated impact to any
smart contract’s safety and security. Therefore, Guardian does not guarantee the explicit security of
the audited smart contract, regardless of the verdict.

42

About Guardian Audits

Founded in 2022 by DeFi experts, Guardian Audits is a leading audit firm in the DeFi smart contract
space. With every audit report, Guardian Audits upholds best-in-class security while achieving our
mission to relentlessly secure DeFi.

To learn more, visit https://guardianaudits.com

To view our audit portfolio, visit https://github.com/guardianaudits

To book an audit, message https://t.me/guardianaudits

43

https://guardianaudits.com/
https://github.com/guardianaudits
https://t.me/guardianaudits

